Dietary restriction (DR) has been a very important discovery in modern aging biology research. Its remarkable anti-aging effect has been proved in a variety of organisms, including members of Lepidoptera, but mechanisms by which DR increases longevity are not fully understood. By using the silkworm (Bombyx mori), a model of lepidopteran insect, we established a DR model, isolated hemolymph from fifth instar larvae and employed LC-MS/MS metabolomics to analyze the effect of DR on the endogenous metabolites of silkworm, and tried to clarify the mechanism of DR to prolong lifespan. We identified the potential biomarkers by analyzing the metabolites of the DR and control groups. Then, we constructed relevant metabolic pathways and networks with MetaboAnalyst. DR significantly prolonged the lifespan of silkworm. The differential metabolites between the DR and control groups were mainly organic acids (including amino acid), and amines. These metabolites are involved in metabolic pathways such as amino acid metabolism. Further analysis showed that, the levels of 17 amino acids were significantly changed in the DR group, indicating that the prolonged lifespan was mainly due to changes in amino acid metabolism. Furthermore, we identified 41 and 28 unique differential metabolites in males and females, respectively, demonstrating sex differences in biological responses to DR. The DR group showed higher antioxidant capacity and lower lipid peroxidation and inflammatory precursors, with differences between the sexes. These results provide evidence for various DR anti-aging mechanisms at the metabolic level and novel reference for the future development of DR-simulating drugs or foods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133320 | PMC |
http://dx.doi.org/10.1038/s41598-023-34132-9 | DOI Listing |
Plant Cell Environ
January 2025
Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!