A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study. | LitMetric

Background: Oesophageal adenocarcinoma and adenocarcinoma of the oesophagogastric junction are among the most common malignant epithelial tumours. Most patients receive neoadjuvant therapy before complete tumour resection. Histological assessment after resection includes identification of residual tumour tissue and areas of regressive tumour, data which are used to calculate a clinically relevant regression score. We developed an artificial intelligence (AI) algorithm for tumour tissue detection and tumour regression grading in surgical specimens from patients with oesophageal adenocarcinoma or adenocarcinoma of the oesophagogastric junction.

Methods: We used one training cohort and four independent test cohorts to develop, train, and validate a deep learning tool. The material consisted of histological slides from surgically resected specimens from patients with oesophageal adenocarcinoma and adenocarcinoma of the oesophagogastric junction from three pathology institutes (two in Germany, one in Austria) and oesophageal cancer cohort of The Cancer Genome Atlas (TCGA). All slides were from neoadjuvantly treated patients except for those from the TCGA cohort, who were neoadjuvant-therapy naive. Data from training cohort and test cohort cases were extensively manually annotated for 11 tissue classes. A convolutional neural network was trained on the data using a supervised principle. First, the tool was formally validated using manually annotated test datasets. Next, tumour regression grading was assessed in a retrospective cohort of post-neoadjuvant therapy surgical specimens. The grading of the algorithm was compared with that of a group of 12 board-certified pathologists from one department. To further validate the tool, three pathologists processed whole resection cases with and without AI assistance.

Findings: Of the four test cohorts, one included 22 manually annotated histological slides (n=20 patients), one included 62 sides (n=15), one included 214 slides (n=69), and the final one included 22 manually annotated histological slides (n=22). In the independent test cohorts the AI tool had high patch-level accuracy for identifying both tumour and regression tissue. When we validated the concordance of the AI tool against analyses by a group of pathologists (n=12), agreement was 63·6% (quadratic kappa 0·749; p<0·0001) at case level. The AI-based regression grading triggered true reclassification of resected tumour slides in seven cases (including six cases who had small tumour regions that were initially missed by pathologists). Use of the AI tool by three pathologists increased interobserver agreement and substantially reduced diagnostic time per case compared with working without AI assistance.

Interpretation: Use of our AI tool in the diagnostics of oesophageal adenocarcinoma resection specimens by pathologists increased diagnostic accuracy, interobserver concordance, and significantly reduced assessment time. Prospective validation of the tool is required.

Funding: North Rhine-Westphalia state, Federal Ministry of Education and Research of Germany, and the Wilhelm Sander Foundation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2589-7500(23)00027-4DOI Listing

Publication Analysis

Top Keywords

manually annotated
16
tumour tissue
12
regression grading
12
oesophageal adenocarcinoma
12
adenocarcinoma adenocarcinoma
12
adenocarcinoma oesophagogastric
12
tumour regression
12
test cohorts
12
histological slides
12
artificial intelligence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!