Sodium silicate (Na2SiO) is an inorganic silica salt used in many products. Few studies reported autoimmune diseases (AIDs) due to Na2SiO exposure. This study investigates the role of Na2SiO exposure by different routes and doses in AID development in rats. We assigned 40 female rats to four groups: G1 control group, G2 rats were subcutaneously injected with 5 mg Na2SiO suspension, and G3 and G4 rats were orally administered 5 mg and 7 mg Na2SiO suspension, respectively. Na2SiO was administered weekly for 20 weeks. Serum anti-nuclear antibodies (ANA) detection, histopathology of kidney, brain, lung, liver, and heart, oxidative stress biomarkers (MDA and GSH) in tissues, Matrix metalloproteinase activity in serum, TNF-α, and Bcl-2 expression in tissues were performed. ANA was significantly increased in silicate groups, especially G2. Creatinine was significantly increased in silicate groups. Histopathology revealed vasculitis and fibrinoid degeneration of blood vessels, a picture of immune-mediated glomerulonephritis in the kidneys, and chronic interstitial pneumonia with medial hypertrophy of pulmonary blood vessels. The activity of gelatinases (MMP-2 and MMP-9) and collagenase (MMP-13), which play role in inflammation, remodeling, and immune complex degradation, were significantly increased in the silicate-exposed groups. Bcl-2 was significantly decreased, indicating apoptosis. Therefore, oral administration and subcutaneous injection of Na2SiO induced immune-mediated glomerulonephritis with elevated ANA levels and overexpression of TNF-α in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2023.110510 | DOI Listing |
Nanomaterials (Basel)
December 2024
Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Geomat Lab, IPGP, CNRS, UPC, 1 Rue Jussieu, 75005 Paris, France.
The viscosity of silicate melts is one of the most important physical properties for understanding high-temperature phenomena in magmatic systems and material processing. The effects of composition and temperature on viscosity have long been elucidated. Although iron ions are the main components of magmatic systems, their influence on viscosity remains unclear because the behavior of iron is complicated; iron ions have two redox states, Fe3+ and Fe2+.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Materials Science, Lutsk National Technical University, Lvivska 75, 43018 Lutsk, Ukraine.
Geopolymers are a modern class of construction materials that show significant potential for sustainable development, especially through the use of industrial wastes such as fly ash. This study investigated the effect of different oil additives on the properties of fly ash-based geopolymers, with particular emphasis on the use of both new and used oils. Test samples were prepared using class F fly ash and a 10-molar solution of sodium hydroxide and an aqueous solution of sodium silicate.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Ningbo Institute of Technology (NIT), Beihang University, Ningbo 315000, China.
Inorganic sand cores involving sodium silicate binder and microsilica have environmental advantages during the casting process of aluminum alloy. Nevertheless, the bending strength of sodium silicate-bonded sand (SSBS) needs to be further improved. In this research, the effect of hydrophobic fumed silica on the bending strength of sand cores was studied.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
The Future Laboratory, Tsinghua University, Beijing 100084, China.
Fly ash (FA) is the main solid waste emitted from coal-fired power plants. Due to its high yield, low utilization rate, and occupation of a large amount of land, it exerts enormous pressure on the Earth's environment. With the deepening of the concept of sustainable development, exploring the reuse of industrial waste such as FA has become a key strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!