Inhibitory and in silico molecular docking of Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa phytochemical compounds on human α-glucosidases.

J Ethnopharmacol

Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA. Electronic address:

Published: August 2023

Ethnopharmacological Relevance: Herbal traditional medicine is used by millions of people in Africa for treatment of ailments such as diabetes mellitus, stomach disorders and respiratory diseases. Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa (X. stuhlmannii (Taub.)) is a medicinal plant used traditionally in Zimbabwe to treat type 2 diabetes mellitus (T2DM) and its complications. However, there is no scientific evidence to support its inhibitory effect against digestive enzymes (α-glucosidases) that are linked to high blood sugar in humans.

Aim Of The Study: This work aims to investigate whether bioactive phytochemicals of crude X. stuhlmannii (Taub.) can scavenge free radicals and inhibit α-glucosidases in order to reduce blood sugar in humans.

Materials And Methods: Here we examined the free radical scavenging potential of crude aqueous, ethyl acetate and methanolic extracts of X. stuhlmannii (Taub.) using the diphenyl-2-picrylhydrazyl assay in vitro. Furthermore, we carried out in vitro inhibition of α-glucosidases (α-amylase and α-glucosidase) by the crude extracts using chromogenic 3,5-dinitrosalicylic acid and p-nitrophenyl-α-D-glucopyranoside substrates. We also used molecular docking approaches (Autodock Vina) to screen for bioactive phytochemical compounds targeting the digestive enzymes.

Results: Our results showed that phytochemicals in X. stuhlmannii (Taub.) aqueous, ethyl acetate and methanolic extracts scavenged free radicals with IC values ranging from 0.002 to 0.013 μg/mL. Furthermore, crude aqueous, ethyl acetate and methanolic extracts significantly inhibited α-amylase and α-glucosidase with IC values of 10.5-29.5 μg/mL (versus 54.1 ± 0.7 μg/mL for acarbose) and 8.8-49.5 μg/mL (versus 161.4 ± 1.8 μg/mL for acarbose), respectively. In silico molecular docking findings and pharmacokinetic predictions showed that myricetin is likely a novel plant-derived α-glucosidase inhibitor.

Conclusion: Collectively, our findings suggest pharmacological targeting of digestive enzymes by X. stuhlmannii (Taub.) crude extracts may reduce blood sugar in humans with T2DM via inhibition of α-glucosidases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.116501DOI Listing

Publication Analysis

Top Keywords

stuhlmannii taub
28
molecular docking
12
blood sugar
12
aqueous ethyl
12
ethyl acetate
12
acetate methanolic
12
methanolic extracts
12
silico molecular
8
xeroderris stuhlmannii
8
taub mendonca
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!