Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, the air pollution and the respiratory disease problems that affect human health are increasing rapidly. Hence, there is attention for trend prediction of the located deposition of inhaled particles. In this study, Weibel's based human airway model (G0-G5) was employed. The computational fluid dynamics and discrete element method (CFD-DEM) simulation was successfully validated by comparison to the previous research studies. The CFD-DEM achieves a better balance between numerical accuracy and computational requirement when comparing with the other methods. Then, the model was used to analyze the non-spherical drug transport with different drug particle sizes, shapes, density, and concentrations. The results found that all the studied factors affected the drug deposition and particle out-mass percentage except the drug concentration. The drug deposition was increased with the increasing of particle size and particle density due to the influence of particle inertia. The Tomahawk-shaped drug deposited easier than the cylindrical drug shape because of the different drag behavior. For the effect of airway geometries, G0 was the maximum deposited zone and G3 was the minimum deposited zone. The boundary layer was found around bifurcation due to the shear force at the wall. Finally, the knowledge can give an essential recommendation for curing patients with pharmaceutical aerosol. The design suggestion of a proper drug delivery device can be summarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.122979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!