Recent studies link increased ozone (O3) and carbon dioxide (CO2) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O3 and CO2 individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O3 alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO2 alone did not differ from the control. Furthermore, as with O3 alone, the mixture of O3 and CO2 also had a significant difference in the VOCs' profile. O3 exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO2 level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O3 and CO2 on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132541 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283480 | PLOS |
Plants (Basel)
January 2025
Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Faba bean ( L.) is a valuable ingredient in plant-based foods such as meat and dairy analogues. However, its typical taste and aroma are considered off-flavours in these food applications, representing a bottleneck during processing.
View Article and Find Full Text PDFVirology
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:
Clover yellow vein virus (ClYVV), a potyvirus that infects various dicotyledonous plants, poses a significant threat to the cultivation of legumes. Although potyviral NIa-Pro was extensively studied in viral infection cycle and host antiviral responses, the contribution of NIa-Pro protease activity to virus systemic symptoms has not yet been reported. In this study, we developed infectious clones of a ClYVV isolated from Pisum sativum.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. Electronic address:
With the increasing severity of heavy metal pollution in soil and water, phytoremediation is becoming increasingly popular because of its low cost, high returns, and environmental friendliness. The use of leguminous plants such as the broad bean for heavy metal remediation is becoming a research hotspot because of their symbiotic relationship with rhizobia. This study investigated the cadmium (Cd) remediation ability of fava beans by M.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman.
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans ( L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!