Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heat stress is a major factor limiting the production and geographic distribution of rice (Oryza sativa), and breeding rice varieties with tolerance to heat stress is of immense importance. Although extensive studies have revealed that reactive oxygen species (ROS) play a critical role in rice acclimation to heat stress, the molecular basis of rice controlling ROS homeostasis remains largely unclear. In this study, we discovered a novel heat-stress-responsive strategy that orchestrates ROS homeostasis centering on an immune activator, rice ENHANCED DISEASE SUSCEPTIBILITY 1 (OsEDS1). OsEDS1, which confers heat stress tolerance, promotes hydrogen peroxide (H2O2) scavenging by stimulating catalase activity through the OsEDS1-catalase association. The loss-of-function mutation in OsEDS1 causes increased sensitivity to heat stress, whereas the overexpression of OsEDS1 enhances thermotolerance. Furthermore, overexpression lines greatly improved rice tolerance to heat stress during the reproductive stage, which was associated with substantially increased seed setting, grain weight, and plant yield. Rice CATALASE C (OsCATC), whose activity is promoted by OsEDS1, degrades H2O2 to activate rice heat stress tolerance. Our findings greatly expand our understanding of heat stress responses in rice. We reveal a molecular framework that promotes heat tolerance through ROS homeostasis regulation, suggesting a theoretical basis and providing genetic resources for breeding heat-tolerant rice varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400032 | PMC |
http://dx.doi.org/10.1093/plphys/kiad257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!