High efficiency organic solar cells (OSCs) based on A-DA'D-A type small molecule acceptors (SMAs) were mostly fabricated by toxic halogenated solvent processing, and power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is mainly restricted by the excessive aggregation of the SMAs. To address this issue, we developed two vinyl π-spacer linking-site isomerized giant molecule acceptors (GMAs) with the π-spacer linking on the inner carbon (EV-i) or out carbon (EV-o) of benzene end group of the SMA with longer alkyl side chains (ECOD) for the capability of non-halogenated solvent-processing. Interestingly, EV-i possesses a twisted molecular structure but enhanced conjugation, while EV-o shows a better planar molecular structure but weakened conjugation. The OSC with EV-i as acceptor processed by the non-halogenated solvent o-xylene (o-XY) demonstrated a higher PCE of 18.27 % than that of the devices based on the acceptor of ECOD (16.40 %) or EV-o (2.50 %). 18.27 % is one of the highest PCEs among the OSCs fabricated from non-halogenated solvents so far, benefitted from the suitable twisted structure, stronger absorbance and high charge carrier mobility of EV-i. The results indicate that the GMAs with suitable linking site would be the excellent candidates for fabricating high performance OSCs processed by non-halogenated solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202303551 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Nankai University, Colege of Chemistry, CHINA.
Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.
The power conversion efficiency (PCE) of single-junction organic solar cells (OSCs) has been promoted above 20%. Device up-scaling draws more and more research attentions. Besides the high PCE for devices with up-scalable fabrication methods and conditions, achieving high stability simultaneously is essential for pushing industrialization of this technology.
View Article and Find Full Text PDFSmall
December 2024
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
Low-cost photovoltaic materials and additive-free, non-halogenated solvent processing of photoactive layers are crucial for the large-scale commercial application of organic solar cells (OSCs). However, high-efficiency OSCs that possess all these advantages remain scarce due to the lack of insight into the structure-property relationship. In this work, three fully non-fused ring electron acceptors (NFREAs), DTB21, DTB22, and DTB23, are reported by utilizing a simplified 1,4-di(thiophen-2-yl)benzene (DTB) core with varied alkoxy chain lengths on the thiophene bridge.
View Article and Find Full Text PDFFront Chem
October 2024
Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.
A simple and sustainable propylphosphonic anhydride (T3P)-assisted methodology for the synthesis of -acyl tryptamines, an interesting class of gut microbiota-derived endocannabinoid-like lipid mediators, was proposed. This protocol is characterized by great operational simplicity, and all products were obtained at room temperature, without the use of an inert atmosphere and by using limited amounts of non-halogenated solvents. Finally, the possibility to realize the reaction under mechanochemical conditions was explored with interesting results.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
Volatile solid additive is an effective and simple strategy for morphology control in organic solar cells (OSCs). The development of environmentally friendly new additives which can also be easily removed without high-temperature thermal annealing treatment is currently a trend, and the working mechanism needs to be further studied. Herein, a highly volatile and non-halogenated solid additive 1-benzothiophene (BBT) is reported to regulate molecular aggregation and stacking of active layer components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!