Polycrystalline Fe- and Sn-based sulfides for high-capacity sodium-ion battery anodes.

Chem Commun (Camb)

Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Published: May 2023

Nano-polycrystalline SnS/SnS/FeS/FeS sulfides anchored on graphene were synthesized annealing SnS and Fe followed by homogeneously combining them with exfoliated graphite. When applied as an anode for a sodium-ion battery, the reversible capacity reached 863 mA h g at 100 mA g. This facial materials synthesis method may be applied in various fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc06928hDOI Listing

Publication Analysis

Top Keywords

sodium-ion battery
8
polycrystalline fe-
4
fe- sn-based
4
sn-based sulfides
4
sulfides high-capacity
4
high-capacity sodium-ion
4
battery anodes
4
anodes nano-polycrystalline
4
nano-polycrystalline sns/sns/fes/fes
4
sns/sns/fes/fes sulfides
4

Similar Publications

Pre-intercalated Sodium Ions Enhance Sodium Storage of MoS Anode by Mitigating Structural Dissociation.

Nano Lett

January 2025

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin University, Tianjin 300072, P. R. China.

Molybdenum disulfide (MoS) is a promising anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and layered structure. However, a poor reversible conversion reaction and a low initial Coulombic efficiency (ICE) limit its practical application. This study systematically investigated the potential of pre-intercalated sodium ions molybdenum disulfide (Na-MoS) as an anode material for SIBs.

View Article and Find Full Text PDF

Electrochemo-Mechanics insights of Sn foil anode in Sodium-Ion batteries.

J Colloid Interface Sci

January 2025

School of Material Science and Engineering, "The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, Hebei University of Technology, Tianjin 300130 China. Electronic address:

The development of high-performance sodium-ion batteries (SIBs) is crucial to meeting the growing demand for low-cost, sustainable energy storage alternatives to lithium-ion batteries (LIBs). However, achieving stable cycling performance in SIBs is challenging, particularly with tin (Sn) foil anodes, which suffer from issues like sodium trapping and structural degradation due to significant volume changes during sodiation and desodiation. In this study, we investigate the electrochemo-mechanical behavior of Sn foil anodes, focusing on the mechanisms of sodium trapping and structural evolution that impair battery performance.

View Article and Find Full Text PDF

Development of sustainable synthesis methods of organic electrode materials (OEMs) for sodium (Na)-ion batteries must take hold rapidly in large scale-synthesis if subsequent commercialisation is to occur. We report a facile and rapid gram-scale synthesis method based on microwave irradiation for disodium naphthalene-2,6-dicarboxylate (Na-NDC) and mono/disodium benzene-1,4-dicarboxylate (Na-BDC) as model compounds. Phase purity and formation of materials was confirmed by various characterisation techniques.

View Article and Find Full Text PDF

Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs) as cathode material for sodium-ion batteries have attracted widespread attention due to their affordability, simple synthesis, and high theoretical capacity. Nevertheless, the oxidation of Fe and sodium loss lead to poor electrochemical properties which restrict the practical use of PBAs. Herein, a simple coprecipitation approach based on sodium salt-reduction-assisted synthesis was proposed to construct high-sodium PBAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!