Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.

Environ Sci Pollut Res Int

National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao, 266061, Shandong Province, China.

Published: May 2023

At present, disposable plastic products such as plastic packaging are very common in our daily life. These products are extremely easy to cause serious damage to the soil and marine environment due to their short design and service life, difficulties in degradation, or long degradation cycles. Thermochemical method (pyrolysis or catalytic pyrolysis) is an efficient and environmentally friendly way to treat plastic waste. In order to further reduce the energy consumption of plastic pyrolysis and improve the recycling rate of spent fluid catalytic cracking (FCC) catalysts, we adopt the "waste-to-waste" approach to apply the spent FCC catalysts as catalysts in the catalytic pyrolysis of plastics, exploring the pyrolysis characteristics, kinetic parameters, and synergistic effects between different typical plastics (polypropylene, low-density polyethylene, polystyrene). The experimental results show that the spent FCC catalysts used in the catalytic pyrolysis of plastics are beneficial to reduce the overall pyrolysis temperature and activation energy, in which the maximum weight loss temperature decreases by about 12 ℃ and the activation energy decreases by about 13%. The activity of spent FCC catalysts is improved after modification by microwave and ultrasonic, which further improve the catalytic efficiency and reduce the energy consumption of pyrolysis. The co-pyrolysis of mixed plastics is dominated by positive synergistic effect, which is conducive to improving the thermal degradation rate and shortening the pyrolysis time. This study provides relevant theoretical support for the resource application of spent FCC catalysts and "waste-to-waste" treatment of plastic waste.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26999-yDOI Listing

Publication Analysis

Top Keywords

fcc catalysts
20
spent fcc
16
catalytic pyrolysis
12
pyrolysis
10
mixed plastics
8
plastic waste
8
reduce energy
8
energy consumption
8
catalysts catalytic
8
pyrolysis plastics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!