Dry matter content and inoculant alter the metabolome and bacterial community of alfalfa ensiled at high temperature.

Appl Microbiol Biotechnol

State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Published: June 2023

Alfalfa silage fermentation quality, metabolome, bacterial interactions, and successions as well as their predicted metabolic pathways were explored under different dry matter contents (DM) and lactic acid bacteria (LAB) inoculations. Silages were prepared from alfalfa with DM contents of 304 (LDM) and 433 (HDM) g/kg fresh weight and inoculated with Lactiplantibacillus plantarum (L. plantarum, LP), Pediococcus pentosaceus (P. pentosaceus, PP), or sterile water (control). The silages were stored at a simulated hot climate condition (35°C) and sampled at 0, 7, 14, 30, and 60 days of fermentation. The results revealed that HDM significantly improved the alfalfa silage quality and altered microbial community composition. The GC-TOF-MS analysis discovered 200 metabolites in both LDM and HDM alfalfa silage, mainly consisting of amino acids, carbohydrates, fatty acids, and alcohols. Compared with LP and control, PP-inoculated silages had increased concentrations of lactic acid (P < 0.05) and essential amino acids (threonine and tryptophan) as well as decreased pH, putrescine content, and amino acid metabolism. However, alfalfa silage inoculated with LP had higher proteolytic activities than control and PP-inoculated silage, as revealed by a higher concentration of ammonia nitrogen (NH-N), and also upregulated amino acid and energy metabolism. HDM content and P. pentosaceus inoculation significantly altered the composition of alfalfa silage microbiota from 7 to 60 days of ensiling. Conclusively, these results indicated that inoculation with PP exhibited great potential in enhancing the fermentation of silage with LDM and HDM via altering the microbiome and metabolome of the ensiled alfalfa, which could help in understanding and improving the ensiling practices under hot climate conditions. KEY POINTS: • HDM improved fermentation quality and declined putrescine content of alfalfa silage • P. pentosaceus inoculation enhanced the fermentation quality of alfalfa silage • P. pentosaceus is an ideal inoculant for alfalfa silage under high temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-023-12535-yDOI Listing

Publication Analysis

Top Keywords

alfalfa silage
32
fermentation quality
12
alfalfa
11
silage
10
dry matter
8
metabolome bacterial
8
high temperature
8
lactic acid
8
hot climate
8
hdm improved
8

Similar Publications

The and isomers of conjugated linoleic acid (CLA) are associated with anticancer and lipolytic effects in tissues, respectively, but in lactating cows, the latter isomer reduces the milk fat concentration, a detrimental aspect for the dairy industry, as it reduces the yield of milk derivatives. Therefore, the objective of this study was to evaluate the effect of providing protected palmitic acid (PA) to grazing lactating Holstein cows supplemented with soybean oil as a source of conjugated linoleic acid, on milk production, fat concentration and mitigation of milk fat depression. Nine multiparous Holstein cows were used, distributed in three groups of three cows each, with initial means of days in milk, live weight, milk production, and number of calvings: 124 ± 16 days, 494 ± 53 kg, 20.

View Article and Find Full Text PDF

Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment.

View Article and Find Full Text PDF

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Phycocyanin Additives Regulate Bacterial Community Structure and Antioxidant Activity of Alfalfa Silage.

Microorganisms

December 2024

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China.

Phycocyanin is a water-soluble pigment protein extracted from prokaryotes such as cyanobacteria and has strong antioxidant activity. As a silage additive, it is expected to enhance the antioxidant activity and fermentation quality of alfalfa silage. This study revealed the effects of different proportions of phycocyanin (1%, 3%, 5%) on the quality, bacterial community and antioxidant capacity of alfalfa silage.

View Article and Find Full Text PDF

Nano-encapsulated Yucca extract as feed additives: Ruminal greenhouse gas emissions of three forages.

AMB Express

December 2024

Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.

Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!