A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bi-level structured functional analysis for genome-wide association studies. | LitMetric

Bi-level structured functional analysis for genome-wide association studies.

Biometrics

Center for Applied Statistics, School of Statistics, and Statistical Consulting Center, Renmin University of China, Beijing, China.

Published: December 2023

Genome-wide association studies (GWAS) have led to great successes in identifying genotype-phenotype associations for complex human diseases. In such studies, the high dimensionality of single nucleotide polymorphisms (SNPs) often makes analysis difficult. Functional analysis, which interprets SNPs densely distributed in a chromosomal region as a continuous process rather than discrete observations, has emerged as a promising avenue for overcoming the high dimensionality challenges. However, the majority of the existing functional studies continue to be individual SNP based and are unable to sufficiently account for the intricate underpinning structures of SNP data. SNPs are often found in groups (e.g., genes or pathways) and have a natural group structure. Additionally, these SNP groups can be highly correlated with coordinated biological functions and interact in a network. Motivated by these unique characteristics of SNP data, we develop a novel bi-level structured functional analysis method and investigate disease-associated genetic variants at the SNP level and SNP group level simultaneously. The penalization technique is adopted for bi-level selection and also to accommodate the group-level network structure. Both the estimation and selection consistency properties are rigorously established. The superiority of the proposed method over alternatives is shown through extensive simulation studies. A type 2 diabetes SNP data application yields some biologically intriguing results.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.13871DOI Listing

Publication Analysis

Top Keywords

functional analysis
12
snp data
12
bi-level structured
8
structured functional
8
genome-wide association
8
association studies
8
high dimensionality
8
snp
7
studies
5
functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!