Ovarian cancer (OC) represents one of the most detrimental gynecological malignancies. RNA-binding protein eukaryotic translation initiation factor 4A isoform 3 (EIF4A3) is well-regarded as a definitive oncogene that contributes to the development of multiple malignant tumors. This study sought to elucidate the molecular mechanism of EIF4A3 in OC growth and aerobic glycolysis by regulation of pyruvate dehydrogenase kinase 4 (PDK4) mRNA stability. We determined the EIF4A3 and PDK4 expression levels in OC cell lines and normal ovarian epithelial cells, and subsequently evaluated the cell viability and colony formation by cell counting kit-8 and colony formation assays. The degree of cell aerobic glycolysis was evaluated by measurements of lactic acid production, glucose intake, adenosine triphosphate level, extracellular oxygen consumption, and protein levels of pyruvate kinase isozymes M2 and hexokinase-2. Afterwards, we verified the binding of EIF4A3 and PDK4 mRNA via RNA immunoprecipitation, and determined the mRNA stability after actinomycin D treatment. Finally, a series of rescue experiments was performed with pcDNA3.1-PDK4. EIF4A3 and PDK4 were upregulated in OC cells. Silencing EIF4A3 obstructed cell proliferation and aerobic glycolysis, while the same was annulled by EIF4A3 overexpression. Mechanically, EIF4A3 could bind to PDK4 mRNA to stabilize its mRNA and upregulate its protein levels. PDK4 overexpression inverted the inhibitory role of silencing EIF4A3 in proliferation and aerobic glycolysis. Overall, our findings highlighted that EIF4A3 induced OC progression by stabilizing PDK4 mRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/kjm2.12690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!