AI Article Synopsis

  • * A new methodology has been developed for accurately measuring short-chain fatty acids (SCFAs) in very low concentrations using magnetic beads and advanced mass spectrometry techniques.
  • * This innovative method allows for easy combination with broader metabolomics studies, enabling researchers to explore the impact of antibiotics on gut microbiome interactions.

Article Abstract

The microbiome has been identified to have a key role for the physiology of their human host. One of the major impacts is the clearance of bacterial pathogens. We have now developed a chemoselective probe methodology for the absolute quantification of short-chain fatty acids at low nM concentrations, with high reproducibility and spiked isotope labelled internal standards. Immobilization to magnetic beads allows for separation from the matrix and the tagged metabolites upon bioorthogonal cleavage can be analyzed UHPLC-MS. The major advantage of our sensitive method is the simple combination with global metabolomics analysis as only a small sample volume is required. We have applied this chemical metabolomics strategy for targeted SCFA analysis combined with global metabolomics on gut microbiome co-cultures with and investigated the effect of antibiotic treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc01223aDOI Listing

Publication Analysis

Top Keywords

global metabolomics
12
quantification short-chain
8
short-chain fatty
8
fatty acids
8
combined global
8
sensitive quantification
4
acids combined
4
metabolomics
4
metabolomics microbiome
4
microbiome cultures
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University, New York, NY, USA.

Background: At least one-third of the identified risk alleles from Genome Wide Association Studies of Alzheimer's disease (AD) are involved in lipid metabolism, lipid transport, or direct lipid binding. BIN1 which is also known as Amphiphysin 2; and PICALM which are involved in phosphoinositide metabolism and binding rank just below the highest risk gene variant of Apolipoprotein E (ApoEε4), a cholesterol and phospholipid transporter. In addition to genetic variants, lipidomic studies have reported severe metabolic dysregulation in human autopsy brain tissue, CSF, blood and multiple mouse models of AD.

View Article and Find Full Text PDF

Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.

View Article and Find Full Text PDF

Unlabelled: Neurodegenerative disorders, including Alzheimer's disease and AD-related dementias (AD/ADRD), pose significant challenges to health care systems globally, particularly in Africa. With the advances in medical technology and research capabilities, especially in next-generation sequencing and imaging, vast amounts of data have been generated from AD/ADRD research. Given that the greatest increase in AD/ADRD prevalence is expected to occur in Africa, it is critical to establish comprehensive bioinformatics training programs to help African scientists leverage existing data and collect additional information to untangle AD/ADRD heterogeneity in African populations.

View Article and Find Full Text PDF

Background: The rapid evolution of the COVID-19 pandemic and subsequent global immunization efforts have rendered early metabolomics studies potentially outdated, as they primarily involved non-exposed, non-vaccinated populations. This paper presents a predictive model developed from up-to-date metabolomics data integrated with clinical data to estimate early mortality risk in critically ill COVID-19 patients. Our study addresses the critical gap in current research by utilizing current patient samples, providing fresh insights into the pathophysiology of the disease in a partially immunized global population.

View Article and Find Full Text PDF

Dissecting the genetic mechanisms underlying urinary metabolite concentrations can provide molecular insights into kidney function and open possibilities for causal assessment of urinary metabolites with risk factors and disease outcomes. Proton nuclear magnetic resonance metabolomics provides a high-throughput means for urinary metabolite profiling, as widely applied for blood biomarker studies. Here we report a genome-wide association study meta-analysed for 3 European cohorts comprising 8,011 individuals, covering both people with type 1 diabetes and general population settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!