The ubiquitous solid-liquid systems in nature usually present an interesting mechanical property, the rate-dependent stiffness, which could be exploited for impact protection in flexible systems. Herein, a typical natural system, the durian peel, has been systematically characterized and studied, showing a solid-liquid dual-phase cellular structure. A bioinspired design of flexible impact-resistant composites is then proposed by combining 3D lattices and shear thickening fluids. The resulting dual-phase composites offer, simultaneously, low moduli (e.g., 71.9 kPa, lower than those of many reported soft composites) under quasi-static conditions and excellent energy absorption (e.g., 425.4 kJ/m, which is close to those of metallic and glass-based lattices) upon dynamic impact. Numerical simulations based on finite element analyses were carried out to understand the enhanced buffering of the developed composites, unveiling a lattice-guided fluid-structure interaction mechanism. Such biomimetic lattice-based flexible impact-resistant composites hold promising potential for the development of next-generation flexible protection systems that can be used in wearable electronics and robotic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c02761DOI Listing

Publication Analysis

Top Keywords

flexible impact-resistant
12
impact-resistant composites
12
composites
6
flexible
5
composites bioinspired
4
bioinspired three-dimensional
4
three-dimensional solid-liquid
4
solid-liquid lattice
4
lattice designs
4
designs ubiquitous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!