Background: Major depressive disorder (MDD) is a life-threatening and debilitating mental health condition. Mitophagy, a form of selective autophagy that eliminates dysfunctional mitochondria, is associated with depression. However, studies on the relationship between mitophagy-related genes (MRGs) and MDD are scarce. This study aimed to identify potential mitophagy-related biomarkers for MDD and characterize the underlying molecular mechanisms.

Methods: The gene expression profiles of 144 MDD samples and 72 normal controls were retrieved from the Gene Expression Omnibus database, and the MRGs were extracted from the GeneCards database. Consensus clustering was used to determine MDD clusters. Immune cell infiltration was evaluated using CIBERSORT. Functional enrichment analyses were performed to determine the biological significance of mitophagy-related differentially expressed genes (MR-DEGs). Weighted gene co-expression network analysis, along with a network of protein-protein interactions (PPI), was used to identify key modules and hub genes. Based on the least absolute shrinkage and selection operator analysis and univariate Cox regression analysis, a diagnostic model was constructed and evaluated using receiver operating characteristic curves and validated with training data and external validation data. We reclassified MDD into two molecular subtypes according to biomarkers and evaluated their expression levels.

Results: In total, 315 MDD-related MR-DEGs were identified. Functional enrichment analyses revealed that MR-DEGs were mainly enriched in mitophagy-related biological processes and multiple neurodegenerative disease pathways. Two distinct clusters with diverse immune infiltration characteristics were identified in the 144 MDD samples. MATR3, ACTL6A, FUS, BIRC2, and RIPK1 have been identified as potential biomarkers of MDD. All biomarkers showed varying degrees of correlation with immune cells. In addition, two molecular subtypes with distinct mitophagy gene signatures were identified.

Conclusions: We identified a novel five-MRG gene signature that has excellent diagnostic performance and identified an association between MRGs and the immune microenvironment in MDD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131417PMC
http://dx.doi.org/10.1186/s12864-023-09304-6DOI Listing

Publication Analysis

Top Keywords

mdd
9
mitophagy-related biomarkers
8
immune infiltration
8
major depressive
8
depressive disorder
8
biomarkers mdd
8
gene expression
8
144 mdd
8
mdd samples
8
functional enrichment
8

Similar Publications

Forty years of seasonal affective disorder.

Psychiatr Pol

October 2024

Uniwersytet Medyczny w Poznaniu.

In 2024, we observe the fortieth anniversary of the publication, where, for the first time, the term of Seasonal Affective Disorder (SAD) was used. Presently, SAD is regarded as a special category of mood disorder. In the American Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V), the seasonality makes a specifier, "with seasonal pattern", both for recurrent depression or Major Depressive Disorder (MDD), and for Bipolar Disorder (BD).

View Article and Find Full Text PDF

Preschool-onset major depressive disorder (PO-MDD) is an impairing pediatric mental health disorder that impacts children as young as three years old. There is limited work dedicated to uncovering neural measures of this early childhood disorder which could be leveraged to further understand both treatment responsiveness and future depression risk. Event-related potentials (ERPs) such as the P300 have been employed extensively in adult populations to examine depression-related deficits in cognitive and motivational systems.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is associated with substantial morbidity and mortality, yet its diagnosis and treatment rates remain low due to its diverse and often overlapping clinical manifestations. In this context, electroencephalography (EEG) has gained attention as a potential objective tool for diagnosing depression. This study aimed to evaluate the effectiveness of EEG in identifying MDD by analyzing 140 EEG recordings from patients diagnosed with depression and healthy volunteers.

View Article and Find Full Text PDF

Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!