To explore the effects of in-situ starvation and reactivation in a continuous anaerobic dynamic membrane reactor (AnDMBR), the anaerobic co-digestion system of food waste and corn straw was firstly start-up and stability operated, and then stopped feeding substrate approximately 70 days. After long-term in-situ starvation, the continuous AnDMBR was reactivated using the same operation conditions and organic loading rate as the continuous AnDMBR used before in-situ starvation. Results shown that the anaerobic co-digestion of corn straw and food waste in the continuous AnDMBR can resume stable operation within 5 days, and the corresponding methane production of 1.38 ± 0.26 L/L/d was completely returned to the methane production before in-situ starvation (1.32 ± 0.10 L/L/d). Through analysis of the specific methanogenic activity and key enzyme activity of the digestate sludge, only the acetic acid degradation activity of methanogenic archaea can be partially recovered, however, the activities of lignocellulose enzyme (lignin peroxidase, laccase, and endoglucanase), hydrolase (α-glucosidase) and acidogenic enzyme (acetate kinas, butyrate kinase, and CoA-transferase) can be fully recovered. Analysis of microorganism community structure using metagenomic sequencing technology showed that starvation decreased the abundance of hydrolytic bacteria (Bacteroidetes and Firmicutes) and increased the abundance of small molecule-utilizing bacteria (Proteobacteria and Chloroflexi) due to lack of substrate during the long-term in-situ starvation stage. Furthermore, the microbial community structure and key functional microorganism still maintained and similar with that of starvation final stage even after long-term continuous reactivation. The reactor performance and sludge enzymes activity in the continuous AnDMBR co-digestion of food waste and corn straw can be well reactivated after long-term in-situ starvation, even though the microbial community structure can not be recovered to the initiating stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163673 | DOI Listing |
Adv Healthc Mater
January 2025
School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
Glucose oxidase (GOX)-induced starvation is a safe treatment for tumor. However, the non-specific targeting of GOX and the plasticity of tumor metabolism lead to toxic side effects and low tumor mortality. Thus, it is necessary to develop a synergistic strategy with high tumor targeting specificity to enhance the mortality of GOX.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China. Electronic address:
Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG).
View Article and Find Full Text PDFAnal Chem
December 2024
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
Nanoelectrodes, renowned for their small size, rapid mass transport, fast response, and high spatiotemporal resolution, have been recognized as a powerful tool in biosensing, especially for single-cell analysis. However, the nanoelectrode itself has no selectivity and cannot respond to nonelectroactive substances, limiting its wide application to some extent. Herein, we propose a simple and efficient electrochemical conjugation strategy to develop an electrochemical aptamer-coupled (E-AC) sensor for detecting adenosine triphosphate (ATP) in single living cells.
View Article and Find Full Text PDFNanomedicine
November 2024
College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!