Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Precision Livestock Farming (PLF) techniques include sensors and tools to install on livestock farms and/or animals to monitor them and support the decision making process of farmers, finally early detecting alerting conditions and improving the livestock efficiency. Direct consequences of this monitoring include enhanced animal welfare, health and productivity, improved farmer lifestyle, knowledge, and traceability of livestock products. The indirect consequences, instead, include improved Carbon Footprint and socio-economic indicators of livestock products. In this context, the aim of this paper is to develop an indicator applicable to dairy cattle farming that takes into account concurrently these indirect consequences. The indicator was developed combining the three sustainability pillars (with specific criteria): environmental (carbon footprint), social (5 freedoms of animal welfare and antimicrobial use) and economic (cost of technology and manpower use). The indicator was then tested on 3 dairy cattle farms located in Italy, where a baseline traditional scenario (BS) was compared with an alternative scenario (AS) where PLF techniques and improved management solutions were adopted. The results highlighted that the carbon footprint reduced in all AS by 6-9 %, and the socio-economic indicators entailed improvements in animals and workers welfare with some differences based on the tested technique. Investing in PLF techniques determines positive effects on all/almost all the criteria adopted for the sustainability indicator, with case-specific aspects to consider. Being a user-friendly tool that supports the testing of different scenarios, this indicator could be used by stakeholders (policy makers and farmers in particular) to identify the best direction towards investments and incentive policies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!