We have previously discovered an amine-containing flavonoid monomer as a potent P-glycoprotein (P-gp) inhibitor (EC = 83 nM). Here, a series of photoactive analogues were synthesized and used together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the -binding sites on P-gp. Point mutations around the photo-crosslinked sites were made for verification. Together with the results from mutational studies, molecular docking, and molecular dynamics simulations, it was found that can interact with Q1193 and I1115 in the nucleotide-binding domain 2 (NBD2) of human P-gp. It was proposed that can inhibit P-gp in 2 novel mechanisms. can either bind to (1) Q1193, followed by interacting with the functionally critical residues H1195 and T1226 or (2) I1115 (a functionally critical residue itself), disrupting the R262-Q1081-Q1118 interaction pocket and uncoupling ICL2-NBD2 interaction and thereby inhibiting P-gp. Q1118 would subsequently be pushed to the ATP-binding site and stimulate ATPase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c02005 | DOI Listing |
Nat Commun
January 2025
Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Using cryogenic electron microscopy (cryo-EM), we determine the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. In the autoinhibited state, the cytosolic regulatory (R) domain plugs into the transmembrane substrate-binding site and extends into the cytosol to form a composite ATP-binding site at the surface of nucleotide-binding domain 2.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Liver Transplantation Center and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China.
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for cirrhosis and hepatocellular carcinoma, for which there is currently no effective treatment. This study aimed to investigate the regulatory mechanism between endoplasmic reticulum stress (ER stress) and pyroptosis in the liver under the context of MASH.
Methods And Results: Pyroptosis was examined in both in vivo and in vitro ER stress models.
J Physiol Investig
January 2025
Department of Emergency, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China.
Sepsis is a life-threatening condition that often results in severe brain injury, primarily due to excessive inflammation and mitochondrial dysfunction. This study aims to investigate the neuroprotective effects of Apelin-13, a bioactive peptide, in a rat model of sepsis-induced brain injury (SBI). Specifically, we examined the role of Apelin-13 in regulating mitophagy through the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin pathway and its impact on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis and oxidative stress.
View Article and Find Full Text PDFAs a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!