Artemisinin, a sesquiterpene lactone obtained from Artemisia annua, is an essential therapeutic against malaria. YABBY family transcription factor AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double-bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, have not yet been elucidated. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (glandular trichome-specific WRKY1) and AaDBR2 (double-bond reductase 2). In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Toward the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1 and AaDBR2 promoters, respectively. In AaYABBY5 overexpression plants, the expression of GSW1 was found to be significantly increased when compared to that of AaYABBY5 antisense or control plants. In addition, AaGSW1 was identified as an upstream activator of AaYABBY5. Further, it was found that AaJAZ8, a transcriptional repressor of jasmonate signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and anti-AaJAZ8 in A. annua increased the activity of AaYABBY5 toward artemisinin biosynthesis. This current study provides the first indication of the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions, which are regulated through AaJAZ8. This knowledge presents AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcad035 | DOI Listing |
Int J Biol Sci
January 2025
Cancer Center and Center of Reproduction, Development & Aging, Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
Cancer radical surgery is the primary treatment for melanoma, but almost all malignant melanoma patients get recurrence and metastasis after surgery and are eventually dead. This clinical dilemma appeals to better drugs for post-surgery therapy. Artemisinin is a safe and effective antimalarial drug used in the clinic for decades.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India.
Artemisinin (ART), a sesquiterpene lactone derived from the sweet wormwood plant (Artemisia annua), exhibits potent anti-malarial and anti-microbial properties, with emerging evidence suggesting its anticancer potential. This review delves into the molecular intricacies underlying ART's anticancer effects, elucidating its modulation of cell signaling pathways, induction of apoptosis and autophagy, and inhibition of angiogenesis crucial for cancer progression. Additionally, the review highlights ART's impact on oxidative stress and DNA damage within cancer cells, along with its potential synergistic effects with conventional cancer drugs to mitigate side effects.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P.
View Article and Find Full Text PDFSci Rep
December 2024
National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China. Electronic address:
Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!