This paper deals with chaotic advection due to a two-way interaction between flexible elliptical-solids and a laminar lid-driven cavity flow in two dimensions. The present Fluid multiple-flexible-Solid Interaction study involves various number N(= 1-120) of equal-sized neutrally buoyant elliptical-solids (aspect ratio β = 0.5) such that they result in the total volume fraction Φ = 10 % as in our recent study on single solid, done for non-dimensional shear modulus G ∗ = 0.2 and Reynolds number R e = 100. Results are presented first for flow-induced motion and deformation of the solids and later for chaotic advection of the fluid. After the initial transients, the fluid as well as solid motion (and deformation) attain periodicity for smaller N ≤ 10 while they attain aperiodic states for larger N > 10. Adaptive material tracking (AMT) and Finite-Time Lyapunov Exponent (FTLE)-based Lagrangian dynamical analysis revealed that the chaotic advection increases up to N = 6 and decreases at larger N(= 6-10) for the periodic state. Similar analysis for the transient state revealed an asymptotic increase in the chaotic advection with increasing N ≤ 120. These findings are demonstrated with the help of two types of chaos signatures: exponential growth of material blob's interface and Lagrangian coherent structures, revealed by the AMT and FTLE, respectively. Our work, which is relevant to several applications, presents a novel technique based on the motion of multiple deformable-solids for enhancement of chaotic advection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0132986 | DOI Listing |
Micromachines (Basel)
November 2024
Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
This work's objective is to investigate the laminar steady flow characteristics of non-Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species transport equations have been solved numerically at low Reynolds numbers with the commercial CFD software Fluent. A procedure has been verified for non-Newtonian flow in studied geometry that is continuously heated.
View Article and Find Full Text PDFSmall
January 2025
Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.
Hydrogel droplets with inner compartments are valuable in various fields, including tissue engineering. A droplet-based biofabrication method is presented for the chaos-assisted production of architected spheres (CAPAS) for the rapid generation of multilayered hydrogel spheres (ranging from 0.6 to 3.
View Article and Find Full Text PDFEnviron Sci Technol
July 2024
Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
Unsaturated porous media, characterized by the combined presence of several immiscible fluid phases in the pore space, are highly relevant systems in nature, because they control the fate of contaminants and the availability of nutrients in the subsoil. However, a full understanding of the mechanisms controlling solute mixing in such systems is still missing. In particular, the role of saturation in the development of chaotic solute mixing has remained unexplored.
View Article and Find Full Text PDFHeliyon
June 2024
Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jessore, 7408, Bangladesh.
In this work, three different twist angles of a micro helical insert in a T-shaped are studied numerically in order to evaluate the laminar steady flow behavior of Newtonian fluid in chaotic geometry. In the geometries under consideration, thermal mixing behavior is carried out using fluids having two distinct input temperatures. Under the influence of chaotic advection and low rates of Reynolds number, the second law of thermodynamics is controlled in terms of the entropy generation caused by hydrodynamic and thermal processes.
View Article and Find Full Text PDFMicromachines (Basel)
May 2024
Institute of Chemical Technology, Mumbai 400019, India.
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid-liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the type of complexity in shape, size, and configuration. It is observed that the use of different aspect ratios of the microchannel width, presence of obstructions, flow and operating conditions, and fluid properties majorly affect the mixing characteristics and pressure drop in passive micromixers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!