Extracellular vesicles (EVs) are membrane-enclosed subcellular structures released by all cell types. EVs have important roles in both cellular homeostasis and intercellular communication. Recent progress in the field revealed substantial heterogeneity of EVs even within the size-based EV categories. Here we addressed the question whether the exportin-1 (XPO1)-mediated nuclear export of RNAs contributed to the EV heterogeneity. Size-based populations were separated from the conditioned media of three cell lines (U937, THP-1 and 5/4E8) in steady-state condition. The effects of activation and leptomycin B treatment (to inhibit the XPO1-mediated nuclear export of RNAs) were also tested in the case of the two monocytic cell lines. Agilent Pico and Small chips were used to characterize RNAs, fragment analysis was performed, and EV-associated miRNAs were tested by Taqman assays. As expected, we found the highest small RNA/total RNA ratio and the lowest rRNA/total RNA proportion in small EVs (~ 50-150 nm). Profiles of the small RNAs within different size-based EV categories significantly differed based on the activation status of the EV releasing cells. Leptomycin B had a differential inhibition on the tested small RNAs in EVs, even within the same EV size category. A similar heterogeneity of the EV miRNA content was observed upon cellular activation and nuclear export inhibition. Here we complement the already existing knowledge on EV heterogeneity by providing evidence that the RNA cargo varies depending on the EV size-based category, the releasing cell type, the functional status of the releasing cells and the exportin-1-mediated nuclear export of RNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s42977-023-00157-4DOI Listing

Publication Analysis

Top Keywords

nuclear export
20
export rnas
16
exportin-1-mediated nuclear
8
size-based categories
8
xpo1-mediated nuclear
8
cell lines
8
small rnas
8
status releasing
8
releasing cells
8
rnas
7

Similar Publications

Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated.

View Article and Find Full Text PDF

The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity.

View Article and Find Full Text PDF

Detailed characterisation of the Co-Smad protein in liver fluke .

J Helminthol

January 2025

Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.

Fasciolosis, caused by the liver flukes and , is a zoonotic parasitic disease associated with substantial economic losses in livestock. The transforming growth factor-beta signalling pathway is implicated in developmental processes and biological functions throughout the animal kingdom, including the spp. It may also mediate host-helminth interactions during infection.

View Article and Find Full Text PDF

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

mRNA export factors store nascent transcripts within nuclear speckles as an adaptive response to transient global inhibition of transcription.

Mol Cell

January 2025

Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!