Designing nanozymes that match natural enzymes have always been an attractive and challenging goal. In general, researchers mainly focus on the construction of metal centers and the control of non-metallic ligands of nanozyme to regulate their activities. However, this is not applicable to lactate oxidase, i.e., flavoenzymes with flavin mononucleotide (FMN)-dependent pathways. Herein, we propose a coordination strategy to mimic lactate oxidase based on engineering the electronic properties at the N center by modulating the Co number near N in the Co-N nanocomposite. Benefitting from the manipulated coordination fields and electronic structure around the electron-rich N sites, CoN/C possesses a precise recognition site for lactate and intermediate organization and optimizes the absorption energies for intermediates, leading to superior oxidation of the lactate α-C-sp(3)-H bond toward ketone. The optimized nanozyme delivers much improved anticancer efficacy by reversing the high lactate and the immunosuppressive state of the tumor microenvironment, subsequently achieving excellent tumor growth and distant metastasis inhibition. The developed CoN/C NEs open a new window for building a bridge between chemical catalysis and biocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c02005 | DOI Listing |
Mater Horiz
January 2025
Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Anal Chem
December 2024
School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Conventional wearable flexible sensing systems typically comprise three components: a flexible substrate that contacts the skin, a signal processing module, and a signal output module. These components function relatively independently, resulting in a complex system that lacks sufficient integration. Therefore, developing an integrated wearable flexible sensing system by combining the flexible substrate, the signal processing module, and the signal output module not only enhances performance and comfort, but also reduces manufacturing costs and the risk of failure.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. Electronic address:
Anti-glycolysis is well-recognized for inhibition of tumor proliferation. However, tumor metabolic heterogeneity confers great challenges in the therapeutic efficacy of glycolysis inhibitors. Here, a metabolic trapping strategy was employed to avoid metabolism heterogeneity in tumors.
View Article and Find Full Text PDFRSC Adv
November 2024
Undergraduate Program in Biomedical Science, University of Vale do Rio dos Sinos (UNISINOS) Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!