A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monodisperse Hyperbranched Polytriazoles as Unimolecular Nanocontainers for Encapsulation of Functional Payloads. | LitMetric

Monodisperse Hyperbranched Polytriazoles as Unimolecular Nanocontainers for Encapsulation of Functional Payloads.

Macromol Rapid Commun

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.

Published: August 2023

In this work, a series of polytriazole-based unimolecular nanocontainers (UNs) with good water solubility, uniformity, and colloidal stability via a bottom-up chain-growth copper-catalyzed azide-alkyne cycloaddition (co)polymerization that features tunable size, degree of branching (DB), and functionality of the UNs is developed. A broad selection of hydrophobic payload molecules, including Nile red (NR), camptothecin, pyrene, 1-pyrenemethanol, and IR676, are successfully encapsulated to demonstrate the high versatility of these polymers as UNs. Using NR as a probe guest, the relationship between the encapsulation performance and the structural properties of UNs, including size and DB, is investigated. Furthermore, the localization and dispersity of encapsulated NR are explored and the dependence of payload's dispersity on the DB of UNs is revealed. The payload encapsulated in UNs exhibits tunable release kinetics, determined by either adjusting release conditions or including pH-responsive structural units in the UNs. Meanwhile, the dyes encapsulated in UNs exhibit improved photostability and stronger resistance to photobleaching. It is expected that these explorations address the size and stability issues widely encounter in current drug/dye nanocarriers and provide a versatile platform of polytriazole-based UNs for suitable payloads in various applications, including drug delivery and bio-imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202300121DOI Listing

Publication Analysis

Top Keywords

uns
9
unimolecular nanocontainers
8
encapsulated uns
8
monodisperse hyperbranched
4
hyperbranched polytriazoles
4
polytriazoles unimolecular
4
nanocontainers encapsulation
4
encapsulation functional
4
functional payloads
4
payloads work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!