In this study investigation of accumulations of critical raw materials (cobalt (Co), antimony (Sb), vanadium (V), lanthanum (La) and tungsten (W)) from wastewater by using C. fracta were aimed. Besides, assessment of the potential health risks in terms of the use of organic fertilizer obtained from the macroalga to be harvested from the treatment were also aimed. Highest Co, Sb, V, La and W accumulations by algae in reactor were 125±6.2%, 201.25±10%, 318.18±15%, 357.97±18%, and 500±25%, respectively. When compared with control, Co, Sb, V, La and W in algae increased 2.25, 3.01, 4.18, 4.58, and 6 times, respectively. The algae was very high bioaccumulative for Co and La. Highest MPI was calculated as 3.94. Non-carcinogenic risk of CRMs according to different exposure types (ingestion, inhalation, and dermal) were calculated for man, woman and child. There is not any non-carcinogenic risk from the investigated exposure ways of algae as organic fertilizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2023.2203905 | DOI Listing |
Sensors (Basel)
January 2025
Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Surgery and Specialties, Central University Hospital of Asturias, Faculty of Medicine and Health Sciences, University of Oviedo, 33011 Oviedo, Spain.
The aim of the circular economy is to treat waste as a valuable raw material, reintegrating it into the industrial economy and extending the lifecycle of subsequent products. Efforts to reduce the production of hard-to-recycle waste are becoming increasingly important to manufacturers, not only of consumer goods but also of specialized items that are difficult to manufacture, such as medical supplies, which have now become a priority for the European Union. The purpose of the study is to manufacture a novel human-purified type I collagen membrane from bone remnants typically discarded during the processing of cortico-cancellous bones in tissue banks and to evaluate its mechanical properties and effectiveness in regenerating bone-critical mandibular defects in rabbits.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Refractory High-Entropy Alloys (RHEAs), such as NbMoTaW, MoNbTaVW, HfNbTaZr, ReHfNbTaW, NbTiAlVTaHfW, TiNbMoTaW (x = 0, 0.25, 0.5, 0.
View Article and Find Full Text PDFInjury
January 2025
Orthopaedic Trauma Institute, University of California, San Francisco, 2540 23rd Street, Bldg 7, 3rd Floor, Rm 3110, San Francisco, CA 94110, USA. Electronic address:
Introduction: The development of national registries from routinely collected health data has transformed the research landscape by improving access to large sample populations. This growing volume of data enables researchers to address critical questions but also challenges clinicians in conducting, evaluating, and applying the research. The National Trauma Data Bank (NTDB), the largest aggregate of deidentified trauma data in the world, is increasingly utilized for retrospective studies on trauma.
View Article and Find Full Text PDFChemSusChem
January 2025
Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.
This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!