Understanding the molecular genetic basis of animal magnet reception has been one of the big challenges in molecular biology. Recently it was discovered that the magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor cryptochrome (Cry). Here, using the fruit fly as a magnet-receptive model organism, we show that the magnetic field exposure (0.4-0.6 mT) extended lifespan under starvation, but not in cryptochrome mutant flies (cry ). The magnetic field exposure increases motor function in wild type and neurodegenerative disease model flies. Furthermore, the magnetic field exposure improved sleep quality at night-time specific manner, but not in cry . We also showed that repeated AC magnetic field exposure increased climbing activity in wild-type Drosophila, but not in cry . The data suggests that magnetic field-dependent improvement of lifespan, sleep quality, and motor function is mediated through a cry-dependent pathway in Drosophila.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gtc.13030 | DOI Listing |
ASAIO J
January 2025
From the Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
The use of cardiac devices, including mechanical circulatory support (MCS), cardiac implantable electronic devices (CIEDs), and pacing wires, has increased and significantly improved survival in patients with severe cardiac failure. However, these devices are frequently associated with acute brain injuries (ABIs) including ischemic strokes, intracranial hemorrhages, seizures, and hypoxic-ischemic brain injury which contribute substantially to morbidity and mortality. Computed tomography (CT) and magnetic resonance imaging (MRI), the standard imaging modalities for ABI diagnosis, can pose significant challenges in this patient population due to the risks associated with patient transportation and the incompatibility of ferromagnetic components of certain cardiac devices with high magnetic field of the MRI.
View Article and Find Full Text PDFACS Nano
January 2025
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations.
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey.
Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Field analysis of heavy metals in biological samples is essential for assessing their potential threats to human health. The development of portable pretreatment and detection devices is crucial to address this challenge. Herein, a magnetic field-accelerated nonthermal plasma digestion device using dielectric barrier discharge (DBD) is designed for the rapid and environmentally friendly pretreatment of biological samples and subsequently combined with point discharge-optical emission spectrometry (PD-OES) for sensitive determination of heavy metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!