Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, a series of 2-amino-4,6-diarylpyrimidine derivatives was designed, synthesized, characterized and evaluated for their α-glucosidase and α-amylase enzyme inhibition assays. The outcomes proved that this class of compounds exhibit considerable inhibitory activity against both enzymes. Among the target compounds, compounds and demonstrated the most potent dual inhibition with IC = 0.087 ± 0.01 μM for α-glucosidase; 0.189 ± 0.02 μM for α-amylase and IC = 0.095 ± 0.03 μM for α-glucosidase; 0.214 ± 0.03 μM for α-amylase, respectively as compared to the standard rutin (IC = 0.192 ± 0.02 μM for α-glucosidase and 0.224 ± 0.02 μM for α-amylase). Remarkably, the enzyme inhibition results indicate that test compounds have stronger inhibitory effect on the target enzymes than the positive control, with a significantly lower IC value. Moreover, these series of compounds were found to inhibit α-glucosidase activity in a reversible mixed-type manner with IC between 0.087 ± 0.01 μM to 1.952 ± 0.26 μM. Furthermore, molecular docking studies were performed to affirm the binding interactions of this scaffold to the active sites of α-glucosidase and α-amylase enzymes. The quantitative structure-activity relationship (QSAR) investigations showed a strong association between structures and their inhibitory actions (IC) with a correlation value () of 0.999916. Finally, molecular dynamic (MD) simulations were carried out to assess the dynamic behavior, stability of the protein-ligand complex, and binding affinity of the most active inhibitor . The experimental and theoretical results therefore exposed a very good compatibility. Additionally, the drug-likeness assay revealed that some compounds exhibit a linear association with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2198609 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!