Background/objectives: Tightly-focused ultrafast laser pulses (pulse widths of 100 fs-10 ps) provide high peak intensities to produce a spatially confined tissue ablation effect. The creation of sub-epithelial voids within scarred vocal folds (VFs) via ultrafast laser ablation may help to localize injectable biomaterials to treat VF scarring. Here, we demonstrate the feasibility of this technique in an animal model using a custom-designed endolaryngeal laser surgery probe.

Methods: Unilateral VF mucosal injuries were created in two canines. Four months later, ultrashort laser pulses (5 ps pulses at 500 kHz) were delivered via the custom laser probe to create sub-epithelial voids of ~3 × 3-mm in both healthy and scarred VFs. PEG-rhodamine was injected into these voids. Ex vivo optical imaging and histology were used to assess void morphology and biomaterial localization.

Results: Large sub-epithelial voids were observed in both healthy and scarred VFs immediately following in vivo laser treatment. Two-photon imaging and histology confirmed ~3-mm wide subsurface voids in healthy and scarred VFs of canine #2. Biomaterial localization within a void created in the scarred VF of canine #2 was confirmed with fluorescence imaging but was not visualized during follow-up two-photon imaging. As an alternative, the biomaterial was injected into the excised VF and could be observed to localize within the void.

Conclusions: We demonstrated sub-epithelial void formation and the ability to inject biomaterials into voids in a chronic VF scarring model. This proof-of-concept study provides preliminary evidence towards the clinical feasibility of such an approach to treating VF scarring using injectable biomaterials.

Level Of Evidences: N/A Laryngoscope, 133:3042-3048, 2023.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754041PMC
http://dx.doi.org/10.1002/lary.30713DOI Listing

Publication Analysis

Top Keywords

ultrafast laser
12
sub-epithelial voids
12
healthy scarred
12
scarred vfs
12
vocal folds
8
laser pulses
8
imaging histology
8
two-photon imaging
8
laser
6
voids
6

Similar Publications

Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory.

J Chem Theory Comput

January 2025

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

With the advancement of high harmonic generation and X-ray free-electron lasers (XFELs) to the attosecond domain, the studies of the ultrafast electron and spin dynamics became possible. Yet, the methods for efficient control and measurement of the quantum state are to be further developed. In this publication, we propose using magnetic X-ray scattering (MXS) for resolving the molecular spin-state dynamics and establish a complete protocol to simulate MXS diffraction patterns in molecules with ab initio quantum chemistry based on the multiconfigurational method.

View Article and Find Full Text PDF

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Unified description of thermal and nonthermal laser-induced ultrafast structural changes in materials.

Sci Rep

December 2024

Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.

The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

Inspired by the ultrafast directional water transport structure of Sarracenia trichomes, hierarchical textured surfaces with specific microgrooves were prepared based on laser processing combined with dip modification, in response to the growing problem of freshwater scarcity. The prepared surfaces were tested for droplet transport behavior to investigate the relationship between the surface structure and the driving force of directional water transport and their effects on the water transport distance and water transport velocity. The results showed that surfaces with a superhydrophobic background associated channels of multirib structures, and a dual-gradient surface of gradient hydrophobic background associated channels with gradient structure performed the best in terms of water transport efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!