Dietary sialic acids: distribution, structure, and functions.

Crit Rev Food Sci Nutr

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Published: September 2024

Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2023.2202254DOI Listing

Publication Analysis

Top Keywords

sialic acids
8
distribution structure
8
breast milk
8
milk bovine
8
bovine milk
8
milk
5
dietary sialic
4
acids distribution
4
structure functions
4
functions sialic
4

Similar Publications

Objectives: To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).

Methods: H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration.

View Article and Find Full Text PDF

Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation.

Cell Rep

January 2025

Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:

Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.

View Article and Find Full Text PDF

The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.

View Article and Find Full Text PDF

Influenza A and B viruses represent significant global health threats, contributing substantially to morbidity and mortality rates. However, a comprehensive understanding of the molecular epidemiology of these viruses in Brazil, a continental-size country and a crucial hub for the entry, circulation, and dissemination of influenza viruses within South America, still needs to be improved. This study addresses this gap by consolidating data and samples across all Brazilian macroregions, as part of the Center for Viral Surveillance and Serological Assessment project, together with an extensive number of other Brazilian sequences provided by a public database during the epidemic seasons spanning 2021-23.

View Article and Find Full Text PDF

SLC35A2 modulates paramyxovirus fusion events during infection.

PLoS Pathog

January 2025

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.

Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!