As the extent of oil palm (Elaeis guineensis) cultivation has expanded at the expense of tropical rainforests, enriching conventional large-scale oil palm plantations with native trees has been proposed as a strategy for restoring biodiversity and ecosystem function. However, how tree enrichment affects insect-mediated ecosystem functions is unknown. We investigated impacts on insect herbivory and pollination in the fourth year of a plantation-scale, long-term oil palm biodiversity enrichment experiment in Jambi, Sumatra, Indonesia. Within 48 plots systematically varying in size (25-1600 m ) and planted tree species richness (one to six species), we collected response data on vegetation structure, understory insect abundances, and pollinator and herbivore activity on chili plants (Capsicum annuum), which served as indicators of insect-mediated ecosystem functions. We examined the independent effects of plot size, tree species richness, and tree identity on these response variables, using the linear model for random partitions design. The experimental treatments were most associated with vegetation structure: tree identity mattered, as the species Peronema canescens strongly decreased (by approximately one standard deviation) both canopy openness and understory vegetation cover; whereas tree richness only decreased understory flower density. Further, the smallest plots had the lowest understory flower density and richness, presumably because of lower light availability and colonization rates, respectively. Enrichment influenced herbivorous insects and natural enemies in the understory to a lesser extent: both groups had higher abundances in plots with two enrichment species planted, possibly because higher associated tree mortality created more habitat, while herbivores decreased with increasing tree species richness, in line with the resource concentration hypothesis. Linking relationships in structural equation models showed that the negative association between P. canescens and understory vegetation cover was mediated through canopy openness. Likewise, canopy openness mediated increases in herbivore and pollinator insect abundances. Higher pollinator visitation increased phytometer yield, while impacts of insect herbivores on yield were not apparent. Our results demonstrate that even at an early stage, different levels of ecological restoration influence insect-mediated ecosystem functions, mainly through canopy openness. These findings suggest that maintaining some canopy gaps while enrichment plots develop may be beneficial for increasing habitat heterogeneity and insect-mediated ecosystem functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2862DOI Listing

Publication Analysis

Top Keywords

canopy openness
20
oil palm
16
insect-mediated ecosystem
16
ecosystem functions
16
tree identity
12
tree species
12
species richness
12
tree
9
palm biodiversity
8
biodiversity enrichment
8

Similar Publications

Niche-related processes explain phylogenetic structure of acoustic bird communities in Mexico.

PeerJ

January 2025

Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

Acoustic communities are acoustically active species aggregations within a habitat, where vocal interactions between species can interfere their communication. The acoustic adaptation hypothesis (AAH) explains how the habitat favors the transmission of acoustic signals. To understand how bird acoustic communities are structured, we tested the effect of habitat structure on the phylogenetic structure, and on the phylogenetic and vocal diversity of acoustic communities in a semi-arid zone of Mexico.

View Article and Find Full Text PDF

Contrasting environmental drivers of tree community variation within heath forests in Brunei Darussalam, Borneo.

Biodivers Data J

December 2024

Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam Bandar Seri Begawan Brunei.

Understanding how abiotic factors influence Bornean tropical tree communities and diversity is a key aspect in elucidating the mechanisms of species co-existence and habitat preferences in these biodiverse forests. We focused on investigating forest structure, tree diversity and community composition of lowland Bornean heath forests in Brunei Darussalam, within two 0.96 ha permanent forest plots at Bukit Sawat Forest Reserve and Badas Forest Reserve.

View Article and Find Full Text PDF

Canopy openness rather than tree species determines atmospheric deposition into forests.

Sci Total Environ

January 2025

Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen 6700AA, the Netherlands.

Atmospheric nutrient deposition plays a crucial role in supplying nutrients to forests on poor soils, making it a key factor in maintaining nutrient stocks and forest productivity. We compared total atmospheric deposition in production forests of European beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), and Scots pine (Pinus sylvestris) by measuring bulk deposition and throughfall while accounting for canopy exchange. We assessed the differences in total deposition resulting from forest management practices such as high-thinning, shelterwood and clearcutting, on forest structure for both macronutrients and micronutrients in areas exposed to high nutrient deposition.

View Article and Find Full Text PDF
Article Synopsis
  • Plant functional traits are important for understanding how different species acquire resources, with separate factors for aboveground (leaves) and belowground (roots) traits, differing from broader trends.
  • The study focuses on intraspecific variation within seedlings, which experience high mortality, and aims to uncover the relationship between these seedlings' traits and factors like soil nutrients and light.
  • Results indicated that leaf and root traits operate on different axes, highlighting an emerging collaboration axis belowground, and suggest limited links between traits and environmental factors, indicating seedlings face specific constraints that may affect their adaptation to changing conditions.
View Article and Find Full Text PDF
Article Synopsis
  • * This study examined the effects of logging on soil from both logging gaps and intact rainforest, analyzing microbial communities, soil properties, and essential soil functions related to nutrient cycling.
  • * While many soil characteristics remained stable post-logging, significant changes occurred in microbial community composition and abundance, especially in ectomycorrhizal fungi, which could affect nutrient cycling and carbon dynamics in these ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!