Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202300157 | DOI Listing |
J Agric Food Chem
December 2024
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, .
View Article and Find Full Text PDFMetabolites
December 2024
Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal-organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA at 345 nm can be selectively quenched by Fe(III) and Se(IV), but the fluorescence emission peak attributed to tetrakis (4-carboxyphenyl) porphyrin (TCPP) at 475 nm will not be disturbed. Therefore, the ratio of I/I with an excitation wavelength of 270 nm can be designed to determine Fe(III) and Se(IV).
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
In the biosensor field, the accurate detection of contagious disease has become one of the most important research topics in the post-pandemic period. However, conventional contagious viral biosensors normally require chemical modifications to introduce the probe molecules to nucleic acids such as a redox indicator, fluorescent dye, or quencher for biosensing. To avoid this complex chemical modification, in this research, mismatched DNA with an intercalated metal ion complex (MIMIC) is employed as the probe sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!