Particle morphology is one of the most significant factors influencing the packing structures of granular materials. With certain targeted properties or optimization criteria, inverse packing problems have drawn extensive attention in terms of their adaptability to many material design tasks. An important question hard to answer is which particle shape, especially within given shape families, forms the densest (loosest) random packing? In this paper, we address this issue for the disk assembly model in two dimensions with an infinite variety of shapes, which are simulated in the random sequential adsorption process to suppress crystallization. a unique shape representation method, particle shapes are transformed into genotype sequences in the continuous shape space where we utilize the genetic algorithm as an efficient shape optimizer. Specifically, we consider three representative species of disk assembly, , congruent tangent disks, incongruent tangent disks, and congruent overlapping disks, and carry out shape optimization on their packing densities in the saturated random state. We numerically search optimal shapes in the three species with a variable number of constituent disks which yield the maximal and minimal packing densities. We obtain an isosceles circulo-triangle and an unclosed ring for the maximal and minimal packing density in saturated random packings, respectively. The perfect sno-cone and isosceles circulo-triangle are also specifically investigated which give remarkably high packing densities of around 0.6, much denser than those of ellipses. This study is beneficial for guiding the design of particle shapes as well as the inverse design of granular materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00166k | DOI Listing |
Carbohydr Polym
March 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China. Electronic address:
This research investigated the effect modified solvent-shifting method on the formation, ordered structure, and morphology of V-type starch. Ionic liquid (IL) dissolution and hot ethanol aqueous incubation in gradient concentrations from 30 % to 80 % (v/v) were applied to optimize the relative crystallinity of V-type starch. The results showed that this new method worked in producing V-type conformation, and higher ethanol concentration tended to yield V-type starch with higher crystallinity and more disk-like shape structure within the ethanol range of 30-50 % (v/v).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia.
The arid mountainous region of Hail in Saudi Arabia has a variety of desert vegetation, some of which are conventionally used in Bedouin traditional medicine. These plants need scientific examination. This research seeks to examine using a thorough multi-analytical methodology that includes antibacterial and antioxidant assessments as well as computational modeling.
View Article and Find Full Text PDFElife
December 2024
Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin's Z-disk to study skeletal muscle development and remodeling.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
Oxygen evolution reaction (OER) catalyst stability metrics derived from aqueous model systems (AMSs) prove valuable only if they are transferable to technical membrane electrode assembly (MEA) settings. Currently, there is consensus that stability data derived from ubiquitous rotating disk electrode (RDE)-based investigations substantially overestimate material degradation mainly due to the nonideal inertness of catalyst-backing electrode materials as well as bubble shielding of the catalyst by evolved oxygen. Despite the independently developed understanding of these two processes, their interplay and relative impact on intrinsic and operational material stability have not yet been established.
View Article and Find Full Text PDFAIMS Microbiol
November 2024
Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan.
Probiotics, known for their health benefits as living microorganisms, hold significant importance across various fields, including agriculture, aquaculture, nutraceuticals, and pharmaceuticals. Optimal delivery and storage of probiotic cells are essential to maximize their effectiveness. Biopolymers, derived from living sources, plants, animals, and microbes, offer a natural solution to enhance probiotic capabilities and they possess distinctive qualities such as stability, flexibility, biocompatibility, sustainability, biodegradability, and antibacterial properties, making them ideal for probiotic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!