Objectives: We applied computer-aided detection (CAD) software for chest X-ray (CXR) analysis to determine if diabetes affects the radiographic presentation of tuberculosis.

Methods: From March 2017-July 2018, we consecutively enrolled adults being evaluated for pulmonary tuberculosis in Karachi, Pakistan. Participants had same-day CXR, two sputum mycobacterial cultures, and random blood glucose measurement. We identified diabetes through self-report or glucose >11.1mMol/L. We included participants with culture-confirmed tuberculosis for this analysis. We used linear regression to estimate associations between CAD-reported tuberculosis abnormality score (range 0.00 to 1.00) and diabetes, adjusting for age, body mass index, sputum smear-status, and prior tuberculosis. We also compared radiographic abnormalities between participants with and without diabetes.

Results: 63/272 (23%) of included participants had diabetes. After adjustment, diabetes was associated with higher CAD tuberculosis abnormality scores (p < 0.001). Diabetes was not associated with frequency of CAD-reported radiographic abnormalities apart from cavitary disease; participants with diabetes were more likely to have cavitary disease (74.6% vs 61.2% p = 0.07), particularly non-upper zone cavitary disease (17% vs 7.8%, p = 0.09).

Conclusions: CAD analysis of CXR suggests diabetes is associated with more extensive radiographic abnormalities and with greater likelihood of cavities outside upper lung zones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121442PMC
http://dx.doi.org/10.1016/j.jctube.2023.100365DOI Listing

Publication Analysis

Top Keywords

chest x-ray
8
pulmonary tuberculosis
8
included participants
8
tuberculosis abnormality
8
tuberculosis
6
diabetes
6
artificial intelligence-reported
4
intelligence-reported chest
4
x-ray findings
4
findings culture-confirmed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!