The role of long-distance mobile metabolites in the plant stress response and signaling.

Plant J

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.

Published: June 2023

Plants developed sophisticated mechanisms to perceive environmental stimuli and generate appropriate signals to maintain optimal growth and stress responses. A fascinating strategy employed by plants is the use of long-distance mobile signals which can trigger local and distant responses across the entire plant. Some metabolites play a central role as long-distance mobile signals allowing plants to communicate across tissues and mount robust stress responses. In this review, we summarize the current knowledge regarding the various long-distance mobile metabolites and their functions in stress response and signaling pathways. We also raise questions with respect to how we can identify new mobile metabolites and engineer them to improve plant health and resilience.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16249DOI Listing

Publication Analysis

Top Keywords

long-distance mobile
16
mobile metabolites
12
role long-distance
8
stress response
8
response signaling
8
stress responses
8
mobile signals
8
mobile
5
metabolites
4
metabolites plant
4

Similar Publications

Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication.

Polymers (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.

View Article and Find Full Text PDF

Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs.

View Article and Find Full Text PDF

Partnerships as signposts? The role of spatial mobility in gendered earnings benefits of graduates.

Adv Life Course Res

January 2025

Federal Institute for Vocational Education and Training, Friedrich-Ebert-Allee 114-116, Bonn 53113, Germany; Bamberg Graduate School of Social Sciences, University of Bamberg, Feldkirchenstr. 21, Bamberg 96052, Germany. Electronic address:

This study analyzes the gender-specific impact of spatial mobility on earnings after graduation from higher education, extending previous research on graduates' mobility benefits, which has largely ignored gender-specific mechanisms. Based on household economic and gender role considerations, this study argues that partnerships are associated with solidifying gender differences in mobility-related earnings benefits. The study uses data from the German National Educational Panel Study (NEPS), Starting Cohort First-Year Students (SC5), and applies entropy balancing weights to account for the self-selection of mobile graduates.

View Article and Find Full Text PDF

Plants lack specialized and mobile immune cells. Consequently, any cell type that encounters pathogens must mount immune responses and communicate with surrounding cells for successful defence. However, the diversity, spatial organization and function of cellular immune states in pathogen-infected plants are poorly understood.

View Article and Find Full Text PDF

Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement.

J Genet Genomics

December 2024

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China. Electronic address:

Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!