AI Article Synopsis

  • Surface strain is a key factor in gas phase catalysis and electrocatalysis, affecting how adsorbates bind to catalysts.
  • Researchers used advanced techniques at the European Synchrotron Radiation Facility to study strain in individual platinum nanoparticles while controlling their electrochemical environment.
  • Findings revealed a complex strain distribution in the nanoparticles that varies with their structure, which can help in designing better nanocatalysts for energy applications.

Article Abstract

Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-023-01528-xDOI Listing

Publication Analysis

Top Keywords

electrochemical control
8
strain
6
imaging strain
4
strain evolution
4
evolution platinum
4
platinum nanoparticle
4
nanoparticle electrochemical
4
control surface
4
surface strain
4
strain employed
4

Similar Publications

"Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose.

J Am Chem Soc

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

The rapid development of flexible electronics necessitates simplified processes that integrate heterogeneous materials and structures. In this study, laser engraving is combined with electrochemical deposition (ECD) to directly fabricate various micro/nano-structured components and flexible electronic circuits. A theoretical framework and simulation model are developed to design the on-demand ECD on laser induced graphene (LIG), enabling the generation of multi-scale copper (Cu) materials with controllable oxidation states.

View Article and Find Full Text PDF

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!