Complex and irregular cell architecture is known to statistically exhibit fractal geometry, i.e., a pattern resembles a smaller part of itself. Although fractal variations in cells are proven to be closely associated with the disease-related phenotypes that are otherwise obscured in the standard cell-based assays, fractal analysis with single-cell precision remains largely unexplored. To close this gap, here we develop an image-based approach that quantifies a multitude of single-cell biophysical fractal-related properties at subcellular resolution. Taking together with its high-throughput single-cell imaging performance (~10,000 cells/sec), this technique, termed single-cell biophysical fractometry, offers sufficient statistical power for delineating the cellular heterogeneity, in the context of lung-cancer cell subtype classification, drug response assays and cell-cycle progression tracking. Further correlative fractal analysis shows that single-cell biophysical fractometry can enrich the standard morphological profiling depth and spearhead systematic fractal analysis of how cell morphology encodes cellular health and pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126163PMC
http://dx.doi.org/10.1038/s42003-023-04839-6DOI Listing

Publication Analysis

Top Keywords

single-cell biophysical
16
biophysical fractometry
12
fractal analysis
12
morphological profiling
8
high-throughput single-cell
8
analysis single-cell
8
single-cell
6
fractal
5
profiling high-throughput
4
biophysical
4

Similar Publications

3D chromatin hubs as regulatory units of identity and survival in human acute leukemia.

Mol Cell

December 2024

Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA. Electronic address:

Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response.

View Article and Find Full Text PDF

Cellular plasticity is a hallmark function of cancer, but many of the underlying mechanisms are not well understood. In this study, we identify Caveolin-1, a scaffolding protein that organizes plasma membrane domains, as a context-dependent regulator of survival signaling in Ewing sarcoma (EwS). Single cell analyses reveal a distinct subpopulation of EwS cells, which highly express the surface marker CD99 as well as Caveolin-1.

View Article and Find Full Text PDF

Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk. Brain ageing is complex and is accompanied by many cellular changes. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown.

View Article and Find Full Text PDF

Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!