Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126116 | PMC |
http://dx.doi.org/10.1038/s41598-023-33806-8 | DOI Listing |
Microb Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Adv Healthc Mater
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!