Different rootstocks for grapes can significantly affect fruit color and quality, possibly by affecting hormone contents, related genetic pathways, and fruit coloring mechanisms in skin. 'Cabernet Sauvignon' was grafted to '5BB', 'SO4', '140R', 'CS', '3309M' and 'Vitis riparia' rootstocks, with self-rooting seedlings as the control (CS/CS), and sampled from the early stage of veraison to the ripening stage. The effects of rootstock on the contents of gibberellin (GA), auxin (IAA), and abscisic acid (ABA) in grape skin were determined alongside the expression levels of eight anthocyanin synthesis related genes using real-time fluorescence quantitative PCR methods. The rootstock cultivars exhibited accelerated fruit color change, and the CS/140R combination resulted in grapes with more color than the control group in the same period. With the development of fruit, the IAA and GA contents in the skin of different rootstock combinations showed trends of increasing initially, then decreasing, while the ABA content decreased initially and then increased. During the verasion (28 July), the various 'Cabernet Sauvignon' rootstock combinations exhibited varying degrees of increases in GA, ABA, and IAA contents; correlation analysis showed that, at the start of veraison, the expression levels of the anthocyanin synthesis-related genes VvCHS, VvDFR, and VvUFGT had strong positive correlations with hormone contents, which indicated they are key genes involved in the endogenous hormone responsive anthocyanin biosynthesis pathway. The results of this study showed that rootstock regulates the fruit coloring process by influencing the metabolism level of peel hormones in the 'Cabernet Sauvignon' grape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125983PMC
http://dx.doi.org/10.1038/s41598-023-33089-zDOI Listing

Publication Analysis

Top Keywords

'cabernet sauvignon'
12
color change
8
fruit color
8
hormone contents
8
fruit coloring
8
expression levels
8
levels anthocyanin
8
iaa contents
8
rootstock combinations
8
fruit
5

Similar Publications

The honeydew moth, Millière (Lepidoptera: Pyralidae), is native to the Mediterranean Basin. However, it has recently been reported as an emerging grapevine pest in southern European Union countries and in the Middle East, North Africa, and South America. This may be attributed to the global warming trends.

View Article and Find Full Text PDF

The key flavor compound formation pathways resulting from indigenous microorganisms during the spontaneous fermentation of wine have not been thoroughly described. In this study, high-throughput metagenomic sequencing and untargeted metabolomics were utilized to investigate the evolution of microbial and metabolite profiles during spontaneous fermentation in industrial-scale wine production and to elucidate the formation mechanisms of key flavor compounds. Metabolome analysis showed that the total amount of esters, fatty acids, organic acids, aldehydes, terpenes, flavonoids, and non-flavonoids increased gradually during fermentation.

View Article and Find Full Text PDF

Manganese (Mn) is involved in plant metabolism as an enzyme cofactor. However, the role of Mn in the formation of volatile compounds in grapes has rarely been studied. To address this gap, this study explored the effect of foliar Mn application on the aroma traits of grapes and wine.

View Article and Find Full Text PDF

Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming.

Hortic Res

January 2025

Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.

View Article and Find Full Text PDF

The individual (poly)phenols of red wines cultivated in two different Western Balkan wine-growing regions were determined using the HPLC method, while the ABTS and DPPH tests were employed to investigate antioxidant activity. The reduction potential of antioxidants was determined by FRAP assay. Five distinct classes of phenolic compounds, including phenolic acids, flavan-3-ols, flavonols, stilbenes, and anthocyanins, were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!