Objectives: Oxidative stress-mediated colistin's nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats.

Methods: Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg.

Key Findings: RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3β and reduced the gene expression of Fyn kinase in renal tissues.

Conclusions: RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 β/Fyn kinase trajectory.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpp/rgad019DOI Listing

Publication Analysis

Top Keywords

acute kidney
8
kidney injury
8
colistin-induced oxidative
8
rats treated
8
rst
6
renal
5
insights role
4
role phlpp2/akt/gsk3β/fyn
4
phlpp2/akt/gsk3β/fyn kinase/nrf2
4
kinase/nrf2 trajectory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!