Changes of soluble and insoluble fractions of pulmonary connective tissue proteins were studied in rats for 2-84 days following a single intratracheal instillation of cadmium chloride (10 micrograms Cd2+/lung). A transient decrease in body weight and an immediate increase in lung wet weight (200% of control value, P less than 0.01) were observed. Incorporation of [14C]proline and its conversion to [14C]hydroxyproline in vivo into different soluble and insoluble fractions of connective tissue revealed an increased metabolic turnover elicited by cadmium intoxication. A lag in the maturation of collagen into higher functional forms in the early phase of the process was demonstrated. A striking decrease in elastin was found in first 7 days (40-50%). However, this acute damage of pulmonary connective tissue was followed by a permanent increase of collagen and elastin concentration in the later phase of recovery. Histopathologic examination 14-84 days after cadmium instillation confirmed the presence of lesions in pulmonary tissue with an initial inflammation followed by reparatory changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0013-9351(86)80077-9 | DOI Listing |
Sci Rep
January 2025
Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
Fat distribution changes with advancing menopause, which predisposes to metabolic inflammation. However, it remains unclear, how health behaviours, including sleeping, eating and physical activity, or their combinations contribute to metabolic inflammation caused by visceral adipose tissue (VAT). The aim of the present study was to examine whether health behaviours are associated with metabolic inflammation and whether VAT mediates these associations in menopausal women.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA.
The absence of a clear consensus on the definition and significance of fascia and the indiscriminate use of the term throughout the clinical and scientific literature has led to skepticism regarding its importance in the human body. To address this challenge, we propose that: (1) fasciae, and the fascial interstitia within them, constitute an anatomical system, defined as a layered body-wide multiscale network of connective tissue that allows tensional loading and shearing mobility along its interfaces; (2) the fascial system comprises four anatomical organs: the superficial fascia, musculoskeletal (deep) fascia, visceral fascia, and neural fascia; (3) these organs are further composed of anatomical structures, some of which are eponymous; (4) all these fascial organs and their structural components contain variable combinations and arrangements of the four classically defined tissues: epithelial, connective, muscle, and neural; (5) the overarching functions of the fascial system arise from the contrasting biomechanical properties of the two basic types of layers distributed throughout the system: one predominantly collagenous and relatively stiff, the other rich in hyaluronic acid and viscous, allowing for the free flow of fluid; (6) the topographical organization of these layers in different locations is related to local variations in function (e.g.
View Article and Find Full Text PDFImmunity
January 2025
Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK. Electronic address:
Interleukin-17 plays a major role in controlling adipose tissue homeostasis. In a recent study published in Nature, Douglas et al. demonstrate that time-of-day-dependent expression of interleukin-17 by tissue-resident innate lymphocytes in the adipose tissue drives circadian regulation of adipose tissue homeostasis and function.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFPLoS One
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China.
Aligned electrospinning membranes (Align) have demonstrated the potential to enhance wound healing by establishing a regenerative microenvironment surrounding the wound; However, the precise mechanism underlying its facilitation of healing remains unclear. To elucidate aligned electrospun fiber membrane's role in accelerating wound healing and improving its quality, we conducted a comprehensive analysis. Firstly, in vivo experiments confirmed that Align promotes wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!