The highly variable clinical outcomes noted after intrasynovial tendon repair have been associated with an early inflammatory response leading to the development of fibrovascular adhesions. Prior efforts to broadly suppress this inflammatory response have been largely unsuccessful. Recent studies have shown that selective inhibition of IkappaB kinase beta (IKK-β), an upstream activator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) signaling, mitigates the early inflammatory response and leads to improved tendon healing outcomes. In the current study, we test the hypothesis that oral treatment with the IKK-β inhibitor ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinenitrile an inhibitor) will modulate the postoperative inflammatory response and improve intrasynovial flexor tendon healing. To test this hypothesis, the flexor digitorum profundus tendon of 21 canines was transected and repaired within the intrasynovial region and assessed after 3 and 14 days. Histomorphometry, gene expression analyses, immunohistochemistry, and quantitative polarized light imaging were used to examine ACHP-mediated changes. ACHP led to reduction in phosphorylated p-65, indicating that NF-κB activity was suppressed. ACHP enhanced expression of inflammation-related genes at 3 days and suppressed expression of these genes at 14 days. Histomorphometry revealed enhanced cellular proliferation and neovascularization in ACHP-treated tendons compared with time-matched controls. These findings demonstrate that ACHP effectively suppressed NF-κB signaling and modulated early inflammation, leading to increased cellular proliferation and neovascularization without stimulating the formation of fibrovascular adhesions. Together, these data suggest that ACHP treatment accelerated the inflammatory and proliferative phases of tendon healing following intrasynovial flexor tendon repair. Clinical Significance: Using a clinically relevant large-animal model, this study revealed that targeted inhibition of nuclear factor kappa-light chain enhancer of activated B cells signaling with ACHP provides a new therapeutic strategy for enhancing the repair of sutured intrasynovial tendons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524774PMC
http://dx.doi.org/10.1002/jor.25576DOI Listing

Publication Analysis

Top Keywords

inflammatory response
16
tendon repair
12
tendon healing
12
intrasynovial tendon
8
early inflammatory
8
fibrovascular adhesions
8
factor kappa-light
8
kappa-light chain
8
chain enhancer
8
enhancer activated
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!