Piscirickettsia salmonis is one of the main pathogens causing considerable economic losses in salmonid farming. The DNA gyrase of several pathogenic bacteria has been the target of choice for antibiotic design and discovery for years, due to its key function during DNA replication. In this study, we carried out a combined in silico and in vitro approach to antibiotic discovery targeting the GyrA subunit of Piscirickettsia salmonis. The in silico results of this work showed that flumequine (-6.6 kcal/mol), finafloxacin (-7.2 kcal/mol), rosoxacin (-6.6 kcal/mol), elvitegravir (-6.4 kcal/mol), sarafloxacin (-8.3 kcal/mol), orbifloxacin (-7.9 kcal/mol), and sparfloxacin (-7.2 kcal/mol) are docked with good affinities in the DNA binding domain of the Piscirickettsia salmonis GyrA subunit. In the in vitro inhibition assay, it was observed that most of these molecules inhibit the growth of Piscirickettsia salmonis, except for elvitegravir. We believe that this methodology could help to significantly reduce the time and cost of antibiotic discovery trials to combat Piscirickettsia salmonis within the salmonid farming industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2023.106122DOI Listing

Publication Analysis

Top Keywords

piscirickettsia salmonis
24
antibiotic discovery
12
combined silico
8
silico vitro
8
vitro approach
8
salmonid farming
8
gyra subunit
8
piscirickettsia
6
salmonis
6
antibiotic
4

Similar Publications

Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.

View Article and Find Full Text PDF

Comparative analysis of the stress and immune responses in Atlantic salmon (Salmo salar) inoculated with live and inactivated Piscirickettsia salmonis.

Fish Shellfish Immunol

January 2025

Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile. Electronic address:

Piscirickettsiosis causes the highest mortality in Atlantic salmon (Salmo salar) farming, and prophylactic treatment has not provided complete protection to date. In this study, we analyzed the immune and metabolic responses of Atlantic salmon inoculated with live and inactivated Piscirickettsia salmonis, monitoring plasma markers related to immune and stress responses. The fish were inoculated with inactivated P.

View Article and Find Full Text PDF

Inter-Laboratory Comparison of qPCR Assays for Piscirickettsia salmonis in Atlantic Salmon (Salmo salar L.) in 11 Chilean Laboratories.

J Fish Dis

February 2025

Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Real-time PCR (qPCR) testing is an essential component of early detection surveillance systems for Piscirickettsia salmonis infection in Atlantic salmon farms in Chile. Currently, all 11 laboratories in the authorised diagnostic laboratory network use assays based on published protocols. Compared with other P.

View Article and Find Full Text PDF

Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against .

Nanomaterials (Basel)

October 2024

Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.

Salmonid rickettsial septicemia (SRS), caused by , has been the most severe health concern for the Chilean salmon industry. The efforts to control infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the treatments.

View Article and Find Full Text PDF
Article Synopsis
  • Piscirickettsiosis, caused by the pathogen P. salmonis, significantly impacts the Chilean aquaculture industry, leading to major economic losses, and traditional genotyping methods are limited in cost and expertise requirements.
  • This study introduces Loop-mediated Isothermal Amplification (LAMP) as a faster, cheaper, and simpler alternative for diagnosing P. salmonis, developing specific assays for both species identification and differentiation between its genogroups LF-89 and EM-90.
  • LAMP assays showed sensitivity and specificity on par with traditional methods while being more suitable for field use, indicating potential for improved disease management and surveillance in salmonid aquaculture.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!