The intricate dynamics of inorganic polyphosphate (polyP) in response to phosphorus (P) limitation and metal exposure typical of contaminated aquatic environments is poorly understood. Cyanobacteria are important primary producers in aquatic environments that are exposed to P stringency as well as metal contamination. There is a growing concern regarding migration of uranium, generated as a result of anthropogenic activities, into the aquatic environments owing to high mobility and solubility of stable aqueous complexes of uranyl ions. The polyP metabolism in cyanobacteria in context of uranium (U) exposure under P limitation has hardly been explored. In this study, we analyzed the polyP dynamics in a marine, filamentous cyanobacterium Anabaena torulosa under combination of variable phosphate concentrations (overplus and deficient) and uranyl exposure conditions typical of marine environments. Polyphosphate accumulation (polyP) or deficient (polyP) conditions were physiologically synthesized in the A. torulosa cultures and were ascertained by (a) toulidine blue staining followed by their visualization using bright field microscopy and (b) scanning electron microscopy in combination with energy dispersive X-ray spectroscopy (SEM/EDX). On exposure to 100 μM of uranyl carbonate at pH 7.8, it was observed that the growth of polyP cells under phosphate limitation was hardly affected and these cells exhibited larger amounts of uranium binding as compared to polyP cells of A. torulosa. In contrast, the polyP cells displayed extensive lysis when exposed to similar U exposure. Our findings suggest that polyP accumulation played an important role in conferring uranium tolerance in the marine cyanobacterium, A. torulosa. The polyP-mediated uranium tolerance and binding could serve as a suitable strategy for remediation of uranium contamination in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2023.107185 | DOI Listing |
Turk J Med Sci
December 2024
Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia.
Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing.
View Article and Find Full Text PDFChemosphere
December 2024
Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen, 518118, Guangdong, PR China.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, China.
Environ Pollut
December 2024
São Paulo State University (Unesp), Environmental Studies Center (CEA), Rio Claro, SP, Brazil; Postgraduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences (IGCE), Rio Claro, SP, Brazil. Electronic address:
Seabirds are particularly susceptible to potentially toxic elements (PTEs) due to the tendency of biomagnification of some elements, thus serving as potential bioindicators for assessing environmental health. In this study, we analyzed As, Cd, Cu and Zn concentrations in liver samples from nine seabird species (51 specimens) collected along the Southwestern Atlantic Ocean. Results revealed substantial variations in PTE concentrations among species, with taxonomic orders influencing accumulation patterns.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.
Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!