AI Article Synopsis

  • * Researchers used molecular modeling to design and analyze NT(8-13) analogs for binding to these receptors, confirming the importance of specific amino acid positions in receptor affinity.
  • * The compound 10 showed better stability and ability to cross the blood-brain barrier, significantly improving motor function and memory in mouse models, indicating potential for new PD treatments.

Article Abstract

The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115386DOI Listing

Publication Analysis

Top Keywords

nts1 nts2
8
mouse model
8
parkinson's disease
8
hnts1 hnts2
8
hnts2 receptor
8
nt8-13 analogs
8
neurotensin8-13 analogs
4
analogs dual
4
dual nts1
4
nts2 receptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!