A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnersgghtu95oi1vodse3omlmn9fia0l3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasmacytoid dendritic cells stimulated with Lactococcus lactis strain Plasma produce soluble factors to suppress SARS-CoV-2 replication. | LitMetric

Plasmacytoid dendritic cells stimulated with Lactococcus lactis strain Plasma produce soluble factors to suppress SARS-CoV-2 replication.

Biochem Biophys Res Commun

AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan. Electronic address:

Published: June 2023

AI Article Synopsis

  • Innate immune responses help control SARS-CoV-2 replication, and a specific lactic acid bacteria strain, Lactococcus lactis strain Plasma (LC-Plasma), can activate immune cells called plasmacytoid dendritic cells (pDCs).
  • Research showed that when pDCs are stimulated with LC-Plasma, their secretions can reduce SARS-CoV-2 replication in cell cultures.
  • The study also found that the secretion of interferon-α (IFN-α) from pDCs is crucial to this suppression; blocking IFN-α decreased the effectiveness of LC-Plasma in reducing the virus's replication.

Article Abstract

Innate immune responses are important in the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. We have previously found a lactic acid bacteria species, Lactococcus lactis strain Plasma (LC-Plasma), which possesses specific feature to activate plasmacytoid dendritic cells (pDCs) and thus may affect innate immune responses. Here, we investigated the impact of pDC activation by LC-Plasma on SARS-CoV-2 replication in vitro. Addition of the culture supernatant of pDCs stimulated with LC-Plasma resulted in suppression of SARS-CoV-2 replication in Vero and Calu-3 cells. We confirmed interferon-α (IFN-α) secretion in the supernatant of pDCs stimulated with LC-Plasma and induction of IFN-stimulated genes in cells treated with the pDC supernatant. Anti-IFN-α antibody impaired the suppression of SARS-CoV-2 replication by the supernatant of LC-Plasma-stimulated pDCs, suggesting that IFN-α plays an important role in the SARS-CoV-2 suppression. Our results indicate the potential of LC-Plasma to induce inhibitory responses against SARS-CoV-2 replication through pDC stimulation with IFN-α secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110276PMC
http://dx.doi.org/10.1016/j.bbrc.2023.04.046DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 replication
24
plasmacytoid dendritic
8
dendritic cells
8
lactococcus lactis
8
lactis strain
8
strain plasma
8
innate immune
8
immune responses
8
supernatant pdcs
8
pdcs stimulated
8

Similar Publications

Nucleocapsid protein (N) of SARS-CoV-2 is a multivalent protein, which is responsible for viral replication, assembly, packaging and modulates host immune response. In this study, we report conformational measurements of N protein at different pH by observing transition in secondary and tertiary structural contents by biophysical and computational approaches. Spectroscopic measurements revealed that N protein loses its secondary and tertiary structure at extreme acidic pH while maintaining its native conformation at mild acidic and alkaline pH.

View Article and Find Full Text PDF

Introduction: To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice.

Methods: We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation.

Results: In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication.

View Article and Find Full Text PDF

Unlabelled: SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1).

View Article and Find Full Text PDF

As the SARS-CoV-2 coronavirus continues to evolve and infect the global population, many individuals are likely to suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Manifestations of PASC include vision symptoms, but little is known about the ability of SARS-CoV-2 to infect and impact the retinal cells. Here, we demonstrate that SARS-CoV-2 can infect and perturb the retinal pigment epithelium (RPE) in vivo, after intranasal inoculation of a transgenic mouse model of SARS-CoV-2 infection, and in cell culture.

View Article and Find Full Text PDF

Structural proteins of human coronaviruses: what makes them different?

Front Cell Infect Microbiol

December 2024

Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.

Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!