A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remedial effect and operating status of a decommissioned uranium mill tailings (UMT) repository: A micro-ecological perspective based on bacterial community. | LitMetric

Remedial effect and operating status of a decommissioned uranium mill tailings (UMT) repository: A micro-ecological perspective based on bacterial community.

J Environ Manage

Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.

Published: August 2023

From a radioecological perspective, increasing attention has been paid to the long-term stabilisation of decommissioned uranium mill tailings (UMT) repositories. However, little is known about the evaluation of decommissioning and remedial effects of UMT repositories from a microecological perspective based on bacterial communities. Here, we analysed the distribution and structure of soil community assemblies along different vertical soil profiles in a decommissioned UMT repository and explored the impact of soil properties, including physicochemical parameters, metal(loid)s, and radionuclides, on the bacterial assemblage. We found that the α diversity of the bacterial community was unaffected by variations in different soil profiles and taxa were classified at the phylum level with small significant differences. In contrast, the bacterial community structure in and around the UMT repository showed significant differences; however, this difference was significantly affected by soil metal(loid)s and physicochemical properties rather than soil radionuclides. In addition, seven bacterial genera with significant differences between the inner and surrounding regions of the repository could be used as potential indicators to further investigate the remedial effects on soil environmental quality. These findings provide novel insights into the construction of an assessment system and in situ biomonitoring of UMT repositories from a microecological perspective based on bacterial communities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117993DOI Listing

Publication Analysis

Top Keywords

umt repository
12
perspective based
12
based bacterial
12
bacterial community
12
umt repositories
12
decommissioned uranium
8
uranium mill
8
mill tailings
8
tailings umt
8
remedial effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!