We study the electron-induced ion-pair dissociation to gas-phase oxygen molecules using a state-of-the-art velocity-map ion-imaging technique. The analysis is entirely based on the conical time-gated wedge-shaped velocity slice images of O-/O2 nascent anionic fragments, and the resulting observations are in favor of Van Brunt et al.'s report [R. J. Van Brunt and L. J. Kieffer, J. Chem. Phys. 60, 3057 (1974)]. A new image reconstruction method, Jacobian over parallel slicing, is introduced to overcome the drawback of ion exaggeration in determining the kinetic energy distribution from the time-gated parallel slicing technique, which offers an alternative approach to the wedge slicing method. Most importantly, the role of the quintet-heavy Rydberg state has been drawn out to the complex ion-pair formalism. The extracted kinetic energy and angular distributions from the wedge slice images reveal a high momentum transfer during the ion-pair dissociation process, which could be the finest rationale to observe the breakdown of dipole Born approximation driven by multipole moment associated with the incident electron beam. Three distinct dissociative momentum bands have been precisely identified for O- dissociation. However, radiationless Rydberg's predissociation continuum (≥15%) has become an inherent character of electron-induced ion-pair dissociation, which could be dealt with using the beyond Born-Oppenheimer treatment. The incoherent sum of Σ and Π symmetric-associated ion-pair final states has been precisely identified by modeling the angular distribution of O-/O2 for each of the kinetic energy bands. A negligibly small amount of forward-backward asymmetry is observed in the angular distribution of O-/O2, which might be explained by the dissociative state-specific quantum coherence mechanism as reported [Krishnakumar et al., Nat. Phys. 14, 149 (2018); Kumar et al., arXiv:2206.15024 (2022)] by Prabhudesai et al.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0141973 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, FI-80100, Joensuu, Finland.
Activation of rac-MeSi(η-Ind)ZrMe (SBIZrMe) and sheet models for MAO, (MeAlO)(MeAl) (6,4), (MeAlO)(MeAl) (7,5), and (MeAlO)(MeAl) (26,9) was studied DFT. These activators can reversibly form an outer-sphere ion-pair (OSIP) [SBIZrMeAlMe] [(MeAlO)(MeAl)Me] 3 ([,] = [7,4]and [26,8]) or a contact ion-pair (CIP) SBIZrMe-μ-Me-6,4 (2b) from SBIZrMe. Dissociation of MeAl from 3 to form CIP SBIZrMe-μ-Me-, (2) is generally unfavourable but reversible in toluene continuum.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China.
In this study, we conducted precise measurements to determine the bond dissociation energy of F, yielding a value of 12939.95 ± 0.40 cm or 154.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France.
In our work, we demonstrate that X-ray photons can initiate a "molecular catapult" effect, leading to the dissociation of chemical bonds and the formation of heavy fragments within just a few femtoseconds. We reconstruct the momenta of fragments from a three-body dissociation in bromochloromethane using the ion pair average (IPA) reference frame, demonstrating how light atomic groups, such as alkylene and alkanylene, can govern nuclear dynamics during the dissociation process, akin to projectiles released by a catapult. Supported by calculations, this work highlights the crucial role of low-reduced-mass vibrational modes in driving ultrafast chemical processes.
View Article and Find Full Text PDFACS Omega
October 2024
Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia.
The complete two-step hydride transfer mechanism of amine oxidation involved in the metabolism of monoamine neurotransmitters was scrutinized by DFT calculations. In living organisms, this process is catalyzed by monoamine oxidase enzymes. Herein, we focus on some intriguing aspects of the reaction that may have been previously noticed but have not been clarified to date.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
Molecular dynamics simulations are used to examine the thermodynamic and structural aspects of the transfer of the classical hydronium ion (HO) across a water/1,2-dichloroethane (DCE) interface assisted by the phase-transfer catalyst (PTC) tetrakis(pentafluorophenyl) borate anion (TPFB). The free energy of transfer from water to DCE of the HO-TPFB ion pair is calculated to be 6 ± 1 kcal/mol, significantly less than that of the free hydronium ion (17 ± 1 kcal/mol). The ion pair is relatively stable at the interface and in the organic phase when it is accompanied by three water molecules with a small barrier to dissociation that supports its utility as a PTC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!