Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Far-field optical beam steering is a fast-growing technology for communications, spatial ranging, and detections. Nonmechanical optical phased arrays based on straight waveguides have been studied recently, where the beam emission angle to the propagation axis can be scanned by conveniently tuning the wavelength. However, the dispersion of the waveguide limits the wavelength sensitivity of beam steering and the deliberately created emitters inevitably introduce in-line backscattering on-chip. To overcome these limitations, here, we report a robust and back-reflection-free topological photonic integrated circuit, where different functionalities, such as beam splitting, routing, and far-field steering, are defined by strategic arrangements of lattices with different topological modulations simply controlled by a single lattice deformation parameter. Benefiting from the robust topological scheme, an extra band flattening is applied to achieve far-field steering with high wavelength sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c00474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!