Non-maximum suppression (NMS) is a post-processing step in almost every visual object detector. NMS aims to prune the number of overlapping detected candidate regions-of-interest (RoIs) on an image, in order to assign a single and spatially accurate detection to each object. The default NMS algorithm (GreedyNMS) is fairly simple and suffers from severe drawbacks, due to its need for manual tuning. A typical case of failure with high application relevance is pedestrian/person detection in the presence of occlusions, where GreedyNMS doesn't provide accurate results. This paper proposes an efficient deep neural architecture for NMS in the person detection scenario, by capturing relations of neighboring RoIs and aiming to ideally assign precisely one detection per person. The presented Seq2Seq-NMS architecture assumes a sequence-to-sequence formulation of the NMS problem, exploits the Multihead Scale-Dot Product Attention mechanism and jointly processes both geometric and visual properties of the input candidate RoIs. Thorough experimental evaluation on three public person detection datasets shows favourable results against competing methods, with acceptable inference runtime requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2023.3268561DOI Listing

Publication Analysis

Top Keywords

person detection
12
non-maximum suppression
8
detection
6
nms
5
neural attention-driven
4
attention-driven non-maximum
4
person
4
suppression person
4
detection non-maximum
4
suppression nms
4

Similar Publications

The aim of this comparative study was to examine the possible benefits of a dedicated Orthopaedic Trauma Room (DOTR) and in the care of patients with proximal femur fractures. A retrospective study of all orthopaedic cases with a hip fracture from 2020 to 2022 at CHC Montlegia has been undertaken, the group is compared to patients with the same impairment from 2018-2020 admitted to Saint Joseph/Esperance CHC hospitals (before the merge and the existence of a DOTR). The delay between the arrival at the emergency department and transfer to the operating room, as well as the mortality are evaluated.

View Article and Find Full Text PDF

Gain-of-function variants in the voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, have previously been identified in patients with erythromelalgia, a clinical diagnosis defined by intermittent attacks of painful, hot, swollen, and red skin, predominantly involving the hands and feet. Symptoms are induced or aggravated by warming and relieved by cooling.

View Article and Find Full Text PDF

This study used functional near-infrared spectroscopy (fNIRS) to measure aspects of the speech discrimination ability of sleeping infants. We examined the morphology of the fNIRS response to three different speech contrasts, namely "Tea/Ba," "Bee/Ba," and "Ga/Ba." Sixteen infants aged between 3 and 13 months old were included in this study and their fNIRS data were recorded during natural sleep.

View Article and Find Full Text PDF

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!