Most patients with Parkinson's disease (PD) have different degrees of movement disorders, and effective gait analysis has a huge potential for uncovering hidden gait patterns to achieve the diagnosis of patients with PD. In this paper, the Static-Dynamic temporal networks are proposed for gait analysis. Our model involves a Static temporal pathway and a Dynamic temporal pathway. In the Static temporal pathway, the time series information of each sensor is processed independently with a parallel one-dimension convolutional neural network (1D-Convnet) to extract respective depth features. In the Dynamic temporal pathway, the stitched surface of the feet is deemed to be an irregular "image", and the transfer of the force points at all levels on the sole is regarded as the "optical flow." Then, the motion information of the force points at all levels is extracted by 16 parallel two-dimension convolutional neural network (2D-Convnet) independently. The results show that the Static-Dynamic temporal networks achieved better performance in gait detection of PD patients than other previous methods. Among them, the accuracy of PD diagnosis reached 96.7%, and the accuracy of severity prediction of PD reached 92.3%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3269569DOI Listing

Publication Analysis

Top Keywords

temporal pathway
16
static-dynamic temporal
12
temporal networks
12
parkinson's disease
8
severity prediction
8
gait analysis
8
static temporal
8
dynamic temporal
8
convolutional neural
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!